Monatshefte für Mathematik

, Volume 94, Issue 2, pp 125–132 | Cite as

On cyclic biquadratic fields related to a problem of Hasse

  • Toru Nakahara
Article

Abstract

In this note we shall prove that there exist infinitely many cyclic biquadratic fieldsK whose integral bases are neither {1, α, α2, β} nor {1, α, β, α3) for any numbers α, β inK. Next, we shall construct infinitely many cyclic biquadratic fieldsK which have the index 1, but still have not the integral basis {1, α, α2, α3) for every α inK. Finally we shall give a class of biquadratic fields for a problem of Hasse concerning an integral basis.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Archinard, G.: Extensions cubiques cycliques deQ dont l'anneau des entiers est monogène. L'Enseign. Math.20, 179–203 (1974).Google Scholar
  2. [2]
    Carlitz, L.: A note on common index divisors. Proc. Amer. Math. Soc.3, 688–692 (1952).Google Scholar
  3. [3]
    Dummit, D. S., Kisilevsky, H.: Indices in cyclic cubic fields. In: Number Theory and Algebra; Collect. Pap. dedic. H. B. Mann, A. E. Ross, and O. Taussky-Todd, pp. 29–42. New York-San Francisco-London: Academic Press. 1977.Google Scholar
  4. [4]
    Engström, H. T.: On the common index divisors of an algebraic field. Trans. Amer. Math. Soc.32, 223–237 (1930).Google Scholar
  5. [5]
    Girtmair, K.: On root polynomials of cyclic cubic equations. Arch. Math.36, 313–326 (1981).Google Scholar
  6. [6]
    Gras, M.-N.: Sur les corps cubiques cycliques dont l'anneau des entiers est monogène. Ann. Sci. Univ. Besançon, Fasc.6, 1–26 (1973).Google Scholar
  7. [7]
    Gras, M.-N.:Z-bases d'entiers 1, θ, θ2, θ3 dans les extensions cycliques de degré 4 de Q. Publ. Math. Univ. Besançon; Theorie des Nombres. 1980–81.Google Scholar
  8. [8]
    Hasse, H.: Über die Klassenzahl abelscher Zahlkörper. Berlin: Akademie-Verlag. 1952.Google Scholar
  9. [9]
    Hasse, H.: Arithmetische Bestimmung von Grundeinheit und Klassenzahl in zyklischen kubischen und biquadratischen Zahlkörpern. Abh. Deutsch. Akad. Wiss. Berlin, Math.-Nat. Kl.1950, Nr. 2, 3–95.Google Scholar
  10. [10]
    Hasse, H.: Vorlesungen über Zahlentheorie. Berlin-Göttingen-Heidelberg-New York: Springer. 1964.Google Scholar
  11. [11]
    Hasse, H.: Zahlentheorie. Berlin: Akademie-Verlag. 1969.Google Scholar
  12. [12]
    Hasse, H.: Zahlbericht. Würzburg-Wien: Physica-Verlag. 1970.Google Scholar
  13. [13]
    Leopoldt, H. W.: Über die Hauptordnung der ganzen Elemente eines abelschen Zahlkörpers. J. Reine Angew. Math.201, 119–149 (1958).Google Scholar
  14. [14]
    Liang, J. J.: On the integral basis of the maximal real subfield of a cyclotomic field. J. Reine Angew. Math.286/287, 223–226 (1976).Google Scholar
  15. [15]
    Nakahara, T.: Examples of algebraic number fields which have not unramified extensions. Rep. Fac. Sci. Engrg. Saga Univ. Math.1, 1–8 (1973).Google Scholar
  16. [16]
    Nakahara, T.: On the unessential factor of the discriminant of a cyclic biquadratic field. (In Japanese.) In: Algebraic Number theory. Proc. Sympos. Kyushu Univ., Fukuoka, 1978, pp. 34–43.Google Scholar
  17. [17]
    Nakahara, T.: On a power basis of the integer ring in an abelian biquadratic field. (In Japanese.) RIMS Kōkyūroku371, 31–46 (1979).Google Scholar
  18. [18]
    Narkiewicz, W.: Elementary and Analytic Theory of Algebraic Numbers. Warsaw: Polish Scientific Publ. 1974.Google Scholar
  19. [19]
    Payan, J. J.: Sur les classes ambigues et les ordres monogènes d'une extension cyclique de degré premier impair surQ ou sur un corps quadratique imaginaire. Ark. Mat.11, 239–244 (1973).Google Scholar
  20. [20]
    Weber, H.: Lehrbuch der Algebra, Bd. 2. Braunschweig: Vieweg. 1899.Google Scholar
  21. [21]
    von Zylinski, E.: Zur Theorie der außerwesentlichen Diskriminantenteiler algebraischer Körper. Math. Ann.73, 273–274 (1913).Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Toru Nakahara
    • 1
  1. 1.Department of Mathematics Faculty of Science and EngineeringSaga UniversitySagaJapan

Personalised recommendations