Monatshefte für Mathematik

, Volume 107, Issue 3, pp 245–256 | Cite as

On measures of uniformly distributed sequences and Benford's law

  • Peter Schatte


The metric theory of uniform distribution of sequences is complemented by considering product measures with not necessarily identical factors. A necessary and sufficient condition is given under which a general product measure assigns the value one to the set of uniformly distributed sequences. For a stationary random product measure, almost all sequences are uniformly distributed with probability one. The discrepancy is estimated byN−1/2log3N for sufficiently largeN. Thus the metric predominance of uniformly distributed sequences is stated, and a further explanation for Benford's law is provided. The results can also be interpreted as estimates of the empirical distribution function for non-identical distributed samples.


Distribution Function General Product Uniform Distribution Empirical Distribution Product Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Benford, F.: The law of anomalous numbers. Proc. Amer. Philos. Soc.78, 551–572 (1938).Google Scholar
  2. [2]
    Csörgö, M., Révész, P.: Strong Approximations in Probability and Statistics. New York: Academic Press. 1981.Google Scholar
  3. [3]
    Diaconis, P.: The distribution of leading digits and uniform distribution mod 1. Ann. Probab.5, 72–81 (1977).Google Scholar
  4. [4]
    Fainleib, A. S.: A generalization of Essen's inequality and an application of it to probabilistic number theory. Izv. AN SSSR, seriya matem.32, 859–879 (1968) (Russian).Google Scholar
  5. [5]
    Gál, I.S., Koksma, J.F.: Sur l'ordre de grandeur des fonctions sommables. Indag. Math.12, 192–207 (1950).Google Scholar
  6. [6]
    Halmos, P.R.: Measure Theory. New York: Van Nostrand 1958.Google Scholar
  7. [7]
    Hlawka, E.: Folgen auf kompakten Räumen. Abh. Math. Sem. Hamburg20, 223–241 (1956).Google Scholar
  8. [8]
    Hlawka, E.: Theorie und Gleichverteilung. Mannheim-Wien-Zürich: Bibl. Inst. 1979.Google Scholar
  9. [9]
    Kallenberg, O.: Random Measures New York: Academic Press (1983).Google Scholar
  10. [10]
    Kuipers, L., Niederreiter, H.: Uniform Distribution of Sequences. New York: J. Wiley & Sons. 1974.Google Scholar
  11. [11]
    Nagasaka, K.: On Benford's law. Ann. Inst. Statist. Math.36, Part A, 337–352 (1984).Google Scholar
  12. [12]
    Niederreiter, H., Philipp, W.: Berry-Esseen bounds and a theorem of Erdös and Turan on uniform distribution mod 1. Duke Math. J.40, 633–649 (1973).Google Scholar
  13. [13]
    Niederreiter, H., Tichy, R. F.: Beiträge zur Diskrepanz bezüglich gewichteter Mittel. Manuscripta Math.42, 85–99 (1983).Google Scholar
  14. [14]
    Raimi, R. A.: The first digit problem. Amer. Math. Monthly83, 521–538 (1976).Google Scholar
  15. [15]
    Schatte, P.: Zur Verteilung der Mantisse in der Gleitkommadarstellung einer Zuffalsgröße. Zeitschr. Angew. Math. Mech.53, 553–565 (1973).Google Scholar
  16. [16]
    Schatte, P.: On sums modulo 2 π of independent random variables. Math. Nachr.110, 243–262 (1983).Google Scholar
  17. [17]
    Schatte, P.: On a law of the iterated logarithm for sums mod 1 with application to Benford's law. Prob. Th. Rel. Fields77, 167–178 (1988).Google Scholar
  18. [18]
    Schatte, P.: On mantissa distributions in computing and Benford's law. J. Inf. Process. Cybern. EIK24, 443–455 (1988).Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Peter Schatte
    • 1
  1. 1.Sektion Mathematik der Bergakademie FreibergFreibergGerman Democratic Republic

Personalised recommendations