Advertisement

Monatshefte für Mathematik

, Volume 114, Issue 3–4, pp 209–244 | Cite as

Optimal control and relaxation of nonlinear elliptic systems

  • Nikolaos S. Papageorgiou
Article
  • 35 Downloads

Abstract

In this paper we study the optimal control of systems driven by nonlinear elliptic partial differential equations. First, with the aid of an appropriate convexity hypothesis we establish the existence of optimal admissible pairs. Then we drop the convexity hypothesis and we pass to the larger relaxed system. First we consider a relaxed system based on the Gamkrelidze-Warga approach, in which the controls are transition probabilities. We show that this relaxed problem has always had a solution and the value of the problem is that of the original one. We also introduce two alternative formulations of the relaxed problem (one of them control free), which we show that they are both equivalent to the first one. Then we compare those relaxed problems, with that of Buttazzo which is based on the Λ-regularization of the “extended” cost functional. Finally, using a powerful multiplier rule of Ioffe-Tichomirov, we derive necessary conditions for optimality in systems with inequality state constraints.

Keywords

Differential Equation Partial Differential Equation Alternative Formulation State Constraint Elliptic System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Ahmed, N. U.: Properties of relaxed trajectories for a class of nonlinear evolution equations on a Banach space. SIAM J. Control Optim.21, 953–967 (1983).MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    Ahmed, N. U.: Existence of optimal relaxed controls for differential inclusions on Banach space. In: Nonlinear Analysis and Applications (ed. V. Lakshmikantham). pp. 39–49. Proc. 7th Intern. Conf. Nonl. Analysis and Appl. New York: Marcel Dekker Inc. 1987.Google Scholar
  3. [3]
    Attouch, H.: Famille d'opérateures maximaux monotones et mésurabilité. Annali di Matematica Pura et Appl.120, 35–111 (1979).MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    Aumann, R.: Integrals of set valued functions. J. Math. Anal. Appl.12, 1–12 (1965).MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    Balder, E.: A general denseness result for relaxed control theory. Bull. Austral. Math. Soc.30, 463–475 (1984).MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    Balder, E.: Necessary and sufficient conditions forL 1-strong-weak lower semicontinuity of integral functionals. Nonlin. Anal.-T.M.A.11, 1399–1404 (1987).MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    Berliocchi, H., Lastry, M.: Intégrandes normales et mesures paramétrées en calcul des variations. Bull. Soc. Math. France101, 129–184 (1973).MathSciNetzbMATHGoogle Scholar
  8. [8]
    Browder, F.: Pseudomonotone operators and nonlinear elliptic boundary value problems on unbounded domains. Proc. Natl. Acad. Sci. USA74, 2659–2661 (1977).MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    Buttazzo, G.: Some relaxation problems in optimal control theory. J. Math. Anal. Appl.125, 272–287 (1987).MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    Buttazzo, G.: Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations. New York: Longman. 1989.zbMATHGoogle Scholar
  11. [11]
    Choquet, G.: Lectures on Analysis, Vol. 1. New York: Benjamin. 1969.zbMATHGoogle Scholar
  12. [12]
    Dellacherie, C., Meyer, A.: Probabilities and Potential. Amsterdam: North-Holland. 1978.zbMATHGoogle Scholar
  13. [13]
    Dunford, N., Schwartz, L.: Linear Operators I. New York: Wiley, 1958.zbMATHGoogle Scholar
  14. [14]
    Ekeland, I.: Sur le contrôle optimal de systèmes gouvernés par des equations elliptiques. J. Funct. Anal.9, 1–62 (1972).MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    Gamkrelidze, R.: Principles of Optimal Control Theory. New York: Plenum Press 1978.CrossRefzbMATHGoogle Scholar
  16. [16]
    Gebel, M.: Control problem for equations of elliptic type. Cybernetics4, 107–110 (1974).MathSciNetCrossRefGoogle Scholar
  17. [17]
    Hiai, F., Umegaki, H.: Integrals, conditional expectations and martingales of multivalued functions. J. Multivariate Anal.7, 149–182 (1977).MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    Ioffe, A., Tichomirov, V.: Theory of Extremal Problems. New York: Elsevier. 1979.Google Scholar
  19. [19]
    Ionescu Tulcea, A. andIonescu Tulcea, C.: Topics in the Theory of Lifting. Berlin: Springer. 1969.CrossRefzbMATHGoogle Scholar
  20. [20]
    Kuznetsov, Yu.: Necessary conditions for optimality in problems of control by systems described by elliptic equations. Siberian Math. J.20, 410–417 (1979).CrossRefzbMATHGoogle Scholar
  21. [21]
    Levin, V.: Borel sections of many valued maps.Siberian Math. J.19, 434–438 (1979).CrossRefzbMATHGoogle Scholar
  22. [22]
    Lions, J.-L.: Optimal Control of Systems Governed by Partial Differential Equations. New York: Springer.1971.CrossRefzbMATHGoogle Scholar
  23. [23]
    Lucchetti, R., Salinetti, G., Wets, R.: Uniform convergence of probability measures, topological criteria. Annals of Statistics. To appear.Google Scholar
  24. [24]
    Mascolo, E., Migliaccio, L.: Relaxation methods in control theory. Appl. Math. Optim.20, 97–103 (1989).MathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    Michel, P.: Necessary conditions for optimality of elliptic systems with positivity constraints on the state. SIAM J. Control Optim.18, 91–97 (1980).MathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    Nenakhov, E., Gorchakov, V.: Necessary conditions of the extremum in optimal control problems for systems described in elliptic-type partial differential equations. Cybernetics2, 262–267 (1972).CrossRefzbMATHGoogle Scholar
  27. [27]
    Papageorgiou, N. S.: Convergence theorems for Banach space valued integrable multifunctions. Intern. J. Math. Math. Sci.10, 433–442 (1987).MathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    Papageorgiou, N. S.: Properties of the relaxed trajectories of evolution equations and optimal control. SIAM J. Control Optim.27, 267–288 (1989).MathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    Papageorgiou, N. S.: On the optimal control and relaxation of infinite dimensional control systems. Ann. Mat. Pura Appl.CLIV, 295–279 (1989).Google Scholar
  30. [30]
    Papageorgiou, N. S.: Random fixed point theorems for measurable multifunctions in Banach spaces. Proc. Amer. Math. Soc.97, 507–514 (1986).MathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    Rockafellar, R. T.: Convex Analysis. Princeton, N. J.: Univ. Press. 1970.CrossRefzbMATHGoogle Scholar
  32. [32]
    Saint Beuve, M.-F.: On the extension of Von Neumann-Aumann's theorem. J. Funct. Anal.17, 112–129 (1974).CrossRefzbMATHGoogle Scholar
  33. [33]
    Tichomirov, V.: Theory of Extremal Problems. New York: Wiley. 1986.Google Scholar
  34. [34]
    Warga, J.: Optimal Control of Differential and Functional Equations. New York: Academic Press. 1972.zbMATHGoogle Scholar
  35. [35]
    Zeidler, E.: Nonlinear Functional Analysis and Applications II. Berlin-Heidelberg-New York: Springer. 1990.CrossRefzbMATHGoogle Scholar
  36. [36]
    Zolezzi, T.: Necessary conditions for optimal control of elliptic or parabolic problems. SIAM J. Control Optim.10, 594–607 (1972).MathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    Cesari, L.: Optimization: Theory and Applications. New York: Springer. 1983.CrossRefzbMATHGoogle Scholar
  38. [38]
    Lions, J.-L.: Quelques Méthodes de Resolution des Problèmes aux Limites Non-Linéaires. Paris: Dunod. 1969.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Nikolaos S. Papageorgiou
    • 1
  1. 1.Department of MathematicsNational Technical UniversityAthensGreece

Personalised recommendations