Monatshefte für Mathematik

, Volume 114, Issue 3–4, pp 175–182 | Cite as

On the mathematical work of Hans Reiter

  • Antoine Derighetti
Article
  • 37 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. Cartier: Ueber einige Integralformen in der Theorie der quadratischen Formen. Math. Zeitschr.84, 93–100 (1964).MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    A. Derighetti: Sur la propriétéP 1. C. R. Acad. Sci. Paris, Série A,283, 317–319 (1976).MathSciNetMATHGoogle Scholar
  3. [3]
    A. Derighetti: Some remarks onL 1 (G). Math. Zeitschr.164, 189–194 (1978).MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    A. Derighetti: Quelques observations concernant les ensembles de Ditkin d'un groupe localement compact. Mh. Math.101, 95–113 (1986).MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    J. Dieudonné: Sur le produit de composition (II). J. Math. Pures et Appliquées39, 275–292 (1960).MathSciNetMATHGoogle Scholar
  6. [6]
    J. Dieudonné: Sur une propriété des groupes libres. J. für die Reine und Angew. Math.204, 30–34 (1960).MATHGoogle Scholar
  7. [7]
    P. Eymard: Moyennes invariantes et représentations unitaires. Lecture Notes in Mathematics300. Berlin: Springer. 1970.MATHGoogle Scholar
  8. [8]
    H. G. Feichtinger: On a new Segal algebra. Mh. Math.92, 269–289 (1989).MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    R. Godement: Les fonctions de type positif et la théorie des groupes. Trans. Amer. Math. Soc.63, 1–48 (1948).MathSciNetMATHGoogle Scholar
  10. [10]
    W. Hauenschild andJ. Ludwig: The injection and the projection theorem for spectral sets. Mh. Math.92, 167–177 (1981).MathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    C. S. Herz: The spectral theory of bounded functions. Trans. Amer. Math. Soc.94, 181–232 (1960).MathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    A. Hulanicki: Means and Foelner condition on locally compact groups. Studia Math.27, 87–104 (1966).MathSciNetMATHGoogle Scholar
  13. [13]
    B. E. Johnson: Some examples in harmonic analysis. Studia Math.48, 181–188 (1973).MathSciNetMATHGoogle Scholar
  14. [14]
    R. Lasser: Zur Idealtheorie in Gruppenalgebren von [FIA]B-Gruppen. Monatsh. Math.85, 59–79 (1978).MathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    K. de Leeuw andC. Herz: An invariance property of spectral synthesis. Illinois J. of Math.9, 220–229 (1965).MathSciNetMATHGoogle Scholar
  16. [16]
    T. S. Liu, A. Van Rooij andJ. Wang: Projections and approximate identities for ideals in group algebras. Trans. Amer. Math. Soc.175, 469–482 (1973).MathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    N. Lohoué: Remarques sur les ensembles de synthèse des algèbres de groupe localement compact. J. Funct. Anal.13, 185–194 (1973).CrossRefMATHGoogle Scholar
  18. [18]
    V. Losert andH. Rindler: Almost invariant sets. Bull. London Math. Soc.13, 145–148 (1981).MathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    F. Lust-Piquard: Sur la synthèse bornée. C. R. Acad. Sci. Paris, Série A,272, 1379–1382 (1971).MATHGoogle Scholar
  20. [20]
    J.-P. Pier: Amenable Locally Compact Groups. New York: John Wiley & Sons. 1984.MATHGoogle Scholar
  21. [21]
    M. Rajagopalan: Mathematical Reviews46, p. 1018, Review no 5933 (1973).Google Scholar
  22. [22]
    H. Rindler: Zur EigenschaftP 1 lokalkompakter Gruppen. Indag. Math.35, 142–147 (1973)MathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    H. Rindler: Über ein Problem von Reiter und ein Problem von Derighetti zur EigenschaftP 1 lokalkompakter Gruppen. Comment. Math. Helv.48, 492–497 (1973).MathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    P. Sarnak: Some Applications of Modular Forms. Cambridge Tracts in Mathematics99. Cambridge: University Press. 1990.Google Scholar
  25. [25]
    C. L. Siegel: Gesammelte Abhandlungen, Bd. III. Berlin-Heidelberg-New York: Springer. 1966.CrossRefGoogle Scholar
  26. [26]
    J. D. Stegeman: On a property concerning locally compact groups. Indag. Math.27, 702–703 (1965)MathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    A. Weil: L'Intégration dans les Groupes Topologiques et ses Applications. Deuxième édition. Paris: Hermann. 1965.MATHGoogle Scholar
  28. [28]
    A. Weil: Sur certains groupes d'opérateurs unitaires. Acta Math.111, 143–211 (1964).MathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    A. Weil: Sur la formule de Siegel dans la théorie des groupes classiques. Acta Math.113, 1–87 (1965).MathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    G. Willis: Factorization in codimension one ideals of group algebras. Proc. Amer. Math. Soc.86, 599–601 (1982).MathSciNetCrossRefMATHGoogle Scholar

Publications of Hans Reiter

  1. [1]
    — Investigations in harmonic analysis. Trans. Amer. Math. Soc.73, 401–427 (1952).MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    — On a certain class of ideals in theL 1-algebra of a locally compact abelian group, Trans. Amer. Math. Soc.75, 505–509 (1953).MathSciNetMATHGoogle Scholar
  3. [3]
    — ÜberL 1-Räume auf Gruppen I. Mh. Math.58, 73–76 (1954).MathSciNetCrossRefGoogle Scholar
  4. [4]
    — ÜberL 1-Räume auf Gruppen II. Mh. Math.58, 172–180 (1954).MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    — Contributions to harmonic analysis. Acta Math.96, 253–263 (1956).MathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    — Beiträge zur harmonischen Analyse II. Math. Annalen133, 298–302 (1957).MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    — Contributions to harmonic analysis III. J. London Math. Soc.32, 477–483 (1957).MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    — Contributions to harmonic analysis IV. Math. Annalen135, 467–476 (1958).MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    — The convex hull of translates of a function inL 1. J. London Math. Soc.35, 5–16 (1960).MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    — Über stetige, offene Abbildungen. Math. Annalen140, 417–421 (1960).MathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    — Beiträge zur harmonischen Analyse V. Math. Annalen140, 422–441 (1960).MathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    — Une propriété analytique d'une certaine classe de groupes localement compacts. C. R. Acad. Sci. Paris254, 3627–3629 (1962).MathSciNetMATHGoogle Scholar
  13. [13]
    — Sur les groupes de Lie semi-simples connexes. C. R. Acad. Sci. Paris255, 2883–2884 (1962).MathSciNetMATHGoogle Scholar
  14. [14]
    — Contributions to harmonic analysis VI. Ann. of Math.77, 552–562 (1963).MathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    — Sur la propriété (P 1) et les fonctions de type positif. C. R. Acad. Sci. Paris258, 5134–5135 (1964).MathSciNetMATHGoogle Scholar
  16. [16]
    — Subalgebras ofL 1 (G). Indag. Math.27, 691–696 (1965).MathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    — On some properties of locally compact groups. Indag. Math.27, 697–701 (1965).MathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    — Zwei Anwendungen der Bruhatschen Funktion. Math. Annalen163, 118–121 (1966).MathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    — Classical Harmonic Analysis and Locally Compact Groups. Oxford: Clarendon Press. 1968.MATHGoogle Scholar
  20. [20]
    — Sur certains idéaux dansL 1 (G). C. R. Acad. Sci. Paris, Série, A,267, 882–885 (1968).MathSciNetMATHGoogle Scholar
  21. [21]
    Hans ReiterL 1-Algebras and Segal Algebras. Lecture Notes in Mathematics231. Springer-Verlag (1971).Google Scholar
  22. [22]
    Hans ReiterL 1-Algebras and Segal algebras. In: Conference in Harmonic Analysis. Lecture Notes in Mathematics266, pp. 281–285. Springer-Verlag (1972).Google Scholar
  23. [23]
    — Über den Satz von Wiener und lokalkompakte Gruppen. Comment. Math. Helv.49, 333–364 (1974).MathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    — Sur le théorème de Weil-Cartier. C. R. Acad. Sci. Paris, Série A,284, 951–954 (1977).MathSciNetMATHGoogle Scholar
  25. [25]
    Hans Reiter Harmonische Analyse und Charaktere zweiten Grades auf lokalkompakten abelschen Gruppen. In: Symposia Mathematica22. Analisi armonica e spazi di funzioni su gruppi localmente compatti, pp. 183–188. Academic Press. 1977.Google Scholar
  26. [26]
    — Über den Satz von Weil-Cartier. Mh. Math.86, 13–62 (1978).MathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    — Theta functions and sympletic groups. Mh. Math.97, 219–232 (1984).MathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    — Theta functions and sympletic groups II. Indag. Math.47, 331–336 (1985).MathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    — Sur le groupe métaplectique et l'algèbre de Segal associée. C. R. Acad. Sci. Paris, Série I.305, 241–243 (1987).MathSciNetMATHGoogle Scholar
  30. [30]
    Hans Reiter Metaplectic groups and harmonic analysis. In: Harmonic Analysis. Lecture Notes in Mathematics1359, pp. 238–241. Springer. 1989.Google Scholar
  31. [31]
    Hans Reiter Metaplectic Groups and Segal Algebras. Lecture Notes in Mathematics1382. Springer. 1989.Google Scholar
  32. [32]
    — (with W. Thirring) Arex andp incompatible observables? Found. of Physics19, 1037–1039 (1989).MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Antoine Derighetti
    • 1
  1. 1.Institut de mathématiquesUniversité de LausanneLausanne

Personalised recommendations