Monatshefte für Mathematik

, Volume 121, Issue 3, pp 189–197

Multiplicative derivations onC(X)

  • Helmut Goldmann
  • Peter Šemrl


LetX be a completely regular topological space satisfying the first axiom of countability with no isolated points, and letC(X) be the algebra of all continuous functions onX. A mappingd:C(X)→C(X) is called a multiplicative derivation ifd(fg)=fd(g)+gd(f) for every pair of functionsf, gC(X) (no linearity or continuity ofd is assumed). We obtain a complete description of such mappings and give examples to show that the above assumptions on the spaceX are essential.

1991 Mathematics Subject Classification

46E25 47B47 

Key words

Multiplicative derivation algebra of continuous functions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Aczél, J., Dhombres, J.: Functional equations in several variables. In: Encyclopedia of Mathematics and Its Applications, Vol. 31. London New York: Cambridge Univ. Press. 1989.Google Scholar
  2. [2]
    Chernoff, P. R.: Representations, automorphisms and derivations of some operator algebras. J. Funct. Anal.12, 275–289 (1973).Google Scholar
  3. [3]
    Johnson, B. E., Sinclair, A. M.: Continuity of derivations and a problem of Kaplansky. Amer. J. Math.90, 1067–1073 (1968).Google Scholar
  4. [4]
    Kaplansky, I.: Ring isomorphisms of Banach algebras. Canad. J. Math.6, 374–381 (1954).Google Scholar
  5. [5]
    Kaplansky, I.: Algebraic and analytic aspects of operator algebras. Regional Conference Series in Mathematics. Providence, R. I.: Amer. Math. Soc. 1970.Google Scholar
  6. [6]
    Samue, P., Zariski, O.: Commutative Algebra, New York: Van Nostrand. 1958.Google Scholar
  7. [7]
    Šemrl, P.: Ring derivations on standard operator algebras. J. Funct. Anal.112, 318–324 (1993).Google Scholar
  8. [8]
    Šemrl, P.: The functional equation of multiplicative derivation is superstable on standard operator algebras. Integral Equations Operator Theory18, 118–122 (1994).Google Scholar
  9. [9]
    Singer, I. M., Wermer, J.: Derivations on commutative normed algebras. Math. Ann.129, 260–264 (1955).Google Scholar
  10. [10]
    Thomas, M. P.: The image of a derivation is contained in the radical, Ann. of Math.128, 435–460 (1988).Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Helmut Goldmann
    • 1
  • Peter Šemrl
    • 2
  1. 1.Mathematisches Institut der Universität BayreuthBayreuthGermany
  2. 2.TF, University of MariborMariborSlovenia

Personalised recommendations