Monatshefte für Mathematik

, Volume 124, Issue 3, pp 215–235 | Cite as

The spectrum of the continuous Laplacian on a graph

  • Carla Cattaneo


We study the spectrum of the continuous Laplacian Δ on a countable connected locally finite graph Γ without self-loops, whose edges have suitable positive conductances and are identified with copies of segments [0, 1], with the condition that the sum of the weighted normal exterior derivatives is 0 at every node (Kirchhoff-type condition). In particular, we analyse the relation-between the spectrum of the operator Δ and the spectrum of the discrete Laplacian (I-P) defined on the vertices of Γ.

1991 Mathematics Subject Classification


Key words

Spectrum continuous Laplacian discrete Laplacian, graph 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Brezis H (1983) Analyse Fonctionnelle — Théorie et Applications. Paris: MassonGoogle Scholar
  2. [2]
    Cattaneo C (1995) The spread of the potential on a homogeneous tree (to appear in Annali di Matematica Pura ed Applicata)Google Scholar
  3. [3]
    Figa-Talamanca A, Picardello MA (1983) Harmonic Analysis on Free Groups. New York: DekkerGoogle Scholar
  4. [4]
    Gaveau B, Okada M, Okada T (1991) Explicit heat kernels on graphs and spectral analysis. In: Several Complex Variables, pp 364–388. Math Notes 38. Princeton: Univ PressGoogle Scholar
  5. [5]
    Lions JL (1962) Problèmes aux limites dans les équations aux dérivées partielles. Séminaire de Mathématiques supérieures Montréal: Univ PressGoogle Scholar
  6. [6]
    Lumer G (1980) Espaces ramifiés et diffusion sur les réseaux topologiques. CR Acad Sci Paris,291 (A): 627–630Google Scholar
  7. [7]
    Magnus W, Karrass A, Solitar D (1976) Combinatorial Group Theory: Presentations of Groups in Terms of Generators and Relations. New York: DoverGoogle Scholar
  8. [8]
    Mohar B, Woess W (1989) A survey on spectra of infinite graph. Bull London Math Soc21: 209–234Google Scholar
  9. [9]
    Munkres JR (1984) Elements of Algebraic Topology. Addison-WesleyGoogle Scholar
  10. [10]
    Nicaise S (1985) Some results on spectral theory over networks, applied to nerve impulse transmission. Lect Notes Math1171: 532–541Google Scholar
  11. [11]
    Nicaise S (1989) Approche spectrale des problèmes de diffusion sur les réseaux Lect Notes Math1235: 120–140Google Scholar
  12. [12]
    Okada T (1993) Asymptotic behavior of skew conditional heat kernals on graph networks. Canadian J Math45: 863–878Google Scholar
  13. [13]
    Rall W, Rinzel J (1973) Branch input resistance and steady attenuation for input to one branch of a dendritic neuron model. Biophysical J13: 648–688Google Scholar
  14. [14]
    Rall W, Rinzel J (1974) Transient response in a dendritic neuron model for current injected at one branch. Biophysical J14: 759–790Google Scholar
  15. [15]
    Roth JP (1984) Le spectra du Laplacien sur un graphe. Lect Notes Math1096: 521–538Google Scholar
  16. [16]
    Soardi PM (1994) Potential theory on infinite networks. Lect Notes Math1590 Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Carla Cattaneo
    • 1
  1. 1.Dipartimento di MatematicaUniversità di MilanoMilanoItaly

Personalised recommendations