manuscripta mathematica

, Volume 32, Issue 1–2, pp 101–136 | Cite as

Existence of the displacements field for an elasto-plastic body subject to Hencky's law and Von Mises yield condition

  • Gabriele Anzellotti
  • Mariano Giaquinta
Article

Abstract

We give “necessary” and sufficient conditions on body and traction forces for the existence of the displacements field for an elasto-plastic body subject to Hencky's law and Von Mises yield condition.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    ANZELLOTTI G., GIAQUINTA M.: Funzioni BV e tracce. Rend. Sem. Mat. Padova, 60, 1–21 (1978)Google Scholar
  2. [2]
    ANZELLOTTI G., GIAQUINTA M., MASSARI U., MODICA MODICA G., PEPE L.: Note sul problema di Plateau. Editrice Tecnico Scientifica, Pisa (1974)Google Scholar
  3. [3]
    DUVAUT G., LIONS J.L.: Les inéquations en mécanique et en physique. Dunod, Paris (1972)Google Scholar
  4. [4]
    EMMER M.: Esistenza unicità e regolarità delle superfici di equilibrio nei capillari. Ann. Mat; Univ. di Ferrara, 18, 79–94 (1973)Google Scholar
  5. [5]
    FLEMING W.: Functions whose partial derivatives are measures. Illinois J. Math. 4, 452–478 (1960)Google Scholar
  6. [6]
    GIAQUINTA M.: On the Dirichlet problem for surfaces of prescribed mean curvature. Manuscripta Math 12, 73–86 (1974)Google Scholar
  7. [7]
    GIAQUINTA M., MODICA G., SOUCEK J.: Functionals with linear growth in the calculus of variations Comm. Math. Univ. Carolinae, 20, 143–171 (1979)Google Scholar
  8. [8]
    GIUSTI E.: Superfici cartesiane di area minima. Rend. Sem. Mat. e Fis. Milano, 40, 3–21 (1970)Google Scholar
  9. [9]
    GIUSTI E.: Boundary value problems for nonparametric surfaces of prescribed mean curvature Ann. Sc. Norm. Sup. Pisa, serie IV, vol III, n.3, 501–548 (1976)Google Scholar
  10. [10]
    GIUSTI E.: Minimal surfaces and functions of bounded variation. Notes on pure math., 10, Camberra (1977)Google Scholar
  11. [11]
    KOHN R.: Ph.D. Thesis, Princeton University (1979)Google Scholar
  12. [12]
    MATTHIES H., STRANG G., CHRISTIANSEN E.: The saddle point of a differential program. In: Energy methods in finite element analysis, ed. by Glowinski, Rodin and Zienkiewicz, John Wiley & Sons (1979)Google Scholar
  13. [13]
    MEYERS N.J., SERRIN J.: H=W. Proc. Nat. Acad. Sci. U.S.A., 51, 1055–1056 (1964)Google Scholar
  14. [14]
    PARIS L.: Etude de la regularité d'un champ de vecteurs à partir de son tenseur déformation. Seminaire d'Analyse Convexe, Univ. de Montpellier 12 (1976)Google Scholar
  15. [15]
    PRAGER W., HODGE P.: Theory of perfectly plastic solids. John Wiley & Sons, New York (1951)Google Scholar
  16. [16]
    RESCHETNYAK G.: On the weak convergence for vector valued measures. (in Russian) Sibirskij Mat. J., 6, 1386- (1968)Google Scholar
  17. [17]
    STRANG G., TEMAM R.: Functions of bounded deformation. To appear in Arch. Rat. Mech.Google Scholar
  18. [18]
    STRANG G., TEMAM R.: Duality and relaxation in the variational problems of plasticity. To appear in J. Méc.Google Scholar
  19. [19]
    STRAUSS M.J.: Variations of Korn's and Sobolev's inequalities. In: Berkeley symposium on PDE, AMS symposia, 23 (1971)Google Scholar
  20. [20]
    SUQUET P.: Existence et régularité des solutions des équations de la plasticité parfaite. Thèse de troisième cycle, Université de Paris VI (1978) et C.R. Acad. Sc. Paris, 286, ser. D, 1201–1204 (1978)Google Scholar
  21. [21]
    TEMAM R.: Navier-Stokes equations. North Holland, New York (1977)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Gabriele Anzellotti
    • 1
  • Mariano Giaquinta
    • 2
  1. 1.Dipartimento di MatematicaLibera Università degli Studi di TrentoPOVO (TRENTO)(Italia)
  2. 2.Istituto di Matematica Applicata, Facoltà di IngegneriaUniversità di FirenzeFIRENZE(Italia)

Personalised recommendations