Digestive Diseases and Sciences

, Volume 31, Supplement 9, pp 147–162 | Cite as

The human intestinal microflora

  • Gary L. Simon
  • Sherwood L. Gorbach


The major host defense mechanisms against bacterial overowth in the small bowel are the normal propulsive activity of the bowel itself and gastric acid secretion. Microbial interactions are a major factor in regulating the indigenous bacterial flora. Studies of the bacterial enzymes of the gut suggest that changes in diet may lead to marked changes in the colonic flora. Antibiotics affect the composition of the colonic microflora. The microflora also influence the degradation of mucin, the conversion of urobilin to urobilinogen, of cholesterol to coprostanol, and the production of short chain fatty acids. Current interests are focused on the bacterial flora of tropical sprue, the role of bacteria in colorectal cancer, and the involvement of intestinal microflora in the enterohepatic circulation of sex steroid hormones.


Bile Acid Intestinal Microflora Coprostanol Fecal Flora Blind Loop 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Moore WEC, Holdeman LV: Discussion of current bacteriologic investigations of the relationships between intestinal flora, diet, and colon cancer. Cancer Res 35:3418–3420, 1975Google Scholar
  2. 2.
    Finegold S, Attebery HR, Sutter VL: Effect of diet on human fecal flora: Comparison of Japanese and American diets. Am J Clin Nutr 27:1456–1469, 1974PubMedGoogle Scholar
  3. 3.
    Drasar BS, Shiner M, Mcleod GM: Studies on the intestinal flora. I. The bacterial flora of the gastrointestinal tract in healthy and achlorhydric persons. Gastroenterology 56:71–79, 1969PubMedGoogle Scholar
  4. 4.
    Gorbach SL, Plaut AG, Nahas L, Weinstein L: Studies of intestinal microflora. II. Microorganisms of the small intestine and their relations to oral and fecal flora. Gastroenterology 53:856–867, 1967PubMedGoogle Scholar
  5. 5.
    Drasar BS, Shiner M: Studies on the intestinal flora. II. Bacterial flora of the small intestine in patients with gastrointestinal disorders. Gut 10:812–819, 1969PubMedGoogle Scholar
  6. 6.
    Simon GL, Gorbach SL: Intestinal flora in health and disease. Gastroenterology 86:174–193, 1984PubMedGoogle Scholar
  7. 7.
    Justesen T, Nielsen OH, Jacobson IE, Lave J, Rasmussen SN: The normal cultivable microflora in upper jejeunal fluid in healthy adults. Scand J Gastroenterol 19:279–282, 1984PubMedGoogle Scholar
  8. 8.
    Hill MJ, Drasar BS: The normal colonic bacterial flora. Gut 16:318–323, 1975PubMedGoogle Scholar
  9. 9.
    Fitzgerald JF: Colonization of the gastrointestinal tract.In Selected Aspects of Perinatal Gastroenterology, Mead Johnson Symposium on Perinatal and Developmental Medicine 1977, pp. 35–38Google Scholar
  10. 10.
    Rotimi VO, Duerden BI: The bacterial flora in normal neonates. J med Micro 14:51–62, 1981Google Scholar
  11. 11.
    Long SS, Swenson RM: Development of anaerobic fecal flora in healthy newborn infants. J Pediatr 91:298–301, 1977PubMedGoogle Scholar
  12. 12.
    Gibbons RJ, Kapsimalis B: Estimates of the overall role of growth of the intestinal microflora of hamsters, guinea pigs and mice. J Bact 93:510–512, 1967PubMedGoogle Scholar
  13. 13.
    Dack GM, Petran E: Bacterial activity in different levels of the intestine and in isolated segments of small and large bowel in monkeys and dogs. J Infect Dis 54:204–220, 1934Google Scholar
  14. 14.
    Gorbach SL: Population control in the small bowel. Gut 8:530–532, 1967PubMedGoogle Scholar
  15. 15.
    Rolfe RD: Interactions among microorganisms of the indigenous intestinal flora and their influence on the host. Rev Inf Dis 67:S73-S59, 1984Google Scholar
  16. 16.
    Dixon JMS: The fate of bacteria in the small intestine. J Path Bact 79:131–140, 1960PubMedGoogle Scholar
  17. 17.
    Broido PW, Gorbach SL, Nyhus LM: Microflora of the gastrointestinal tract and the surgical malabsorption syndromes. Surg Gynecol Obstet 135:449–460, 1972PubMedGoogle Scholar
  18. 18.
    Drude RB Jr., Hines C Jr: The pathophysiology of intestinal bacterial overgrowth syndromes. Arch Intern Med 140:1349–1352, 1980PubMedGoogle Scholar
  19. 19.
    Gorbach SL, Tabaqchali S: Bacteria, bile, and the small bowel. Gut 10:963–972, 1969PubMedGoogle Scholar
  20. 21.
    King CE, Toskes PP: Small intestine bacterial overgrowth. Gastroenterol 76:1035–1055, 1979Google Scholar
  21. 21.
    Muscroft TJ, Deane SA, Youngs D, Burdon DW, Keighley MRB: The microflora of the postoperative stomach. Br J Surg 68:560–564, 1981PubMedGoogle Scholar
  22. 22.
    Enanker LK, Nilsson F, Ryden AC, Schwan A: The aerobic and anaerobic microflora of the gastric remnant more than 15 year after Billroth II resection. Scand J Gastroenterol 17:715–720, 1982Google Scholar
  23. 23.
    Cash R, Music S, Libonati J, Snder M, Wenzel R, Hornick R: Response of man to infection withV. cholerae. I. Clinical, serologic and bacteriologic response to a known inoculum. J Infect Dis 129:45–52, 1974PubMedGoogle Scholar
  24. 24.
    Mackowiak PA. The normal microbial flora. N Engl J Med 307:83–93, 1982PubMedGoogle Scholar
  25. 25.
    Savage DC: Microbial ecology of the gastrointestinal tract. Ann Rev Microbiol 31:107–133, 1977Google Scholar
  26. 26.
    Wolin MJ: Metabolic interactions among intestinal microorganisms. Am J Clin Nutr 27:1320–1328, 1974PubMedGoogle Scholar
  27. 27.
    Freter R: In-vivo and in-vitro antagonism of intestinal bacteria againstShigella flexneri II. The inhibitory mechanism. J Inf Dis 110:38–46, 1962Google Scholar
  28. 28.
    Byrne BM, Dankert J: Volatile fatty acids and aerobic flora in the gastrointestinal tract of mice under various conditions. Infect Immun 23:559–563, 1979PubMedGoogle Scholar
  29. 29.
    Hentges DJ, Maier BR: Inhibition ofShigella flexneri by the normal intestinal flora. III. Interactions withBacteroides fragilis strains in vitro. Infect Immun 2:364–370, 1970PubMedGoogle Scholar
  30. 30.
    Luckey TD: Bicentennial overview of intestinal microecology. Am J Clin Nutr 30:1753–1761, 1977PubMedGoogle Scholar
  31. 31.
    Kelstrup J, Gibbons RJ: Inactivation of bacteriocins in the intestinal canal and oral cavity. J Bacteriol 99:888–890, 1969PubMedGoogle Scholar
  32. 32.
    Gorbach SL, Nahas L, Lerer PI, Weinstein L: Studies of intestinal microflora. I. Effects of diet, age, and periodic sampling on numbers of fecal microorganisms in man. Gastroenterol 53:845–855, 1967Google Scholar
  33. 33.
    Gorbach SL: The effect of diet on the intestinal microflora and its metabolic functions.In Defined Formula Diets for Medical Purposes, ME Shils (ed). Am Med Assoc, Chicago, 1977Google Scholar
  34. 34.
    Attebery HR, Sutter VL, Finegold SM: Effect of a partially chemically defined diet on normal human fecal flora. Am J Clin Nutr 1391–1398, 1972Google Scholar
  35. 35.
    Bornside GH, Cohn Jr, I: Stability of normal human fecal flora during a chemically defined, low residue liquid diet. Ann Surg 181:58–60, 1974Google Scholar
  36. 36.
    Drasar BS, Jenkins DJA, Cummings JH: The influence of a diet rich in wheat fiber on the human fecal flora. J Med Microb 9:423–431, 1976Google Scholar
  37. 37.
    Hentges DJ: Fecal flora of volunteers on controlled diets. Am J Clin Nutr 31:S123-S124, 1978PubMedGoogle Scholar
  38. 38.
    Hill MJ, Drasar BS, Aries V, Crowther JS, Hawksworth G, Williams REO: Bacteria and aetiology of cancer of large bowel. Lancet 1:95–100, 1971PubMedGoogle Scholar
  39. 39.
    Finegold SM, Sutter VL: Fecal flora in different populations, with special reference to diet. Am J Clin Nutr 31:S116-S122, 1978PubMedGoogle Scholar
  40. 40.
    Finegold SM, Sutter VL, Sugihara PT, Elder HA, Lehmann SM, Phillips RL: Fecal microbial flora in Seventh Day Adventist populations and control subjects. Am J Clin Nutr 30:1781–1792, 1977PubMedGoogle Scholar
  41. 41.
    Bartlett JG, Condon RE, Gorbach SL, Clarke JS, Nichols RL, Ochi S: Veterans Administration cooperative study on bowel preparation for elective colorectal operations: Impact of oral antibiotic regimen on colonic flora, wound irrigation cultures and bacteriology of septic complications. Ann Surg 188:249, 254 1978PubMedGoogle Scholar
  42. 42.
    Gorbach SL, Spanknebel G, Weinstein L, Plaut AG, Nahas L, Levitan R: Studies of intestinal microflora. VIII. Effect of lincomycin on the microbial population of the human intestine. J Infect Dis 120:298–304, 1969PubMedGoogle Scholar
  43. 43.
    Nordenvall B, Hallberg D, Larsson L, Nord CE: The effect of clindamycin on the intestinal flora in patients with enteic hyoperoxaluria. Scand J Gastroenterol 18:177–181, 1983PubMedGoogle Scholar
  44. 44.
    Clarke JS, Condon RE, Bartlett JG, Gorbach SL, Nichols RL, Ochi S: Preoperative oral antibiotics reduce septic complications of colon operations: Results of prospective, randomized, double-blind clinical study. Ann Surg 186:251–259, 1977PubMedGoogle Scholar
  45. 45.
    Nichols RL, Broido P, Condon RE, Gorbach SL, Nyhus LM: Effect of preoperative neomycin-erythromicin intestinal preparation on the incidence of infectious complications following colon cancer. Ann Surg 178:453–462, 1973PubMedGoogle Scholar
  46. 46.
    Dion YM, Richards GK, Prentis JJ, Hinchey EJ: The influence of oral versus parenteral preoperative metronidazole on sepsis following colon surgery. Ann Surg 192:221–226, 1980PubMedGoogle Scholar
  47. 47.
    Schimpff SC, Young VM, Greene WH, Vermeulen GD, Mood MR, Wiernik PH: Origin of infection in acute nonlymphocytic leukemia: Significance of hospital acquisition of potential pathogens. Ann Intern Med 77:707–714, 1972PubMedGoogle Scholar
  48. 48.
    Guiot HFL, van den Broek PJ, van der Meer JWM, van Furth R: Selective antimicrobial modulation of the intestinal flora of patients with acute nonlymphocytic leukemia: A double-blind, placebo-controlled study. J Inf Dis 147:615, 1983Google Scholar
  49. 49.
    Gurwith MJ, Brunton JL, Lank BA, Harding GKM, Ronald AR: A prospective controlled investigation of prophylactic trimethorpim/sulfamethoxazole in hospitalized granulocytopenic patients. Am J Med 66:248–256, 1979PubMedGoogle Scholar
  50. 50.
    Schimpff SC, Greene WH, Young VM, Fortner CL, Jepsen L, Cusack N, Block JB, Wiernik PH: Infection prevention in acute nonlymphocytic leukemia: Laminar air flow room reverse isolation with oral, nonabsorbable antibiotic prophylaxis. Ann Intern Med 82:351–358, 1975PubMedGoogle Scholar
  51. 51.
    Sleijfer DT, Mulder NH, de Vries-Hospers HG, Fidler V, Nieweg HO, van der Waaij D, van Saene HKF: Infection prevention in granulocytopenic patients by selective decontamination of the digestive tract. Europ J Cancer 16:859–869, 1980Google Scholar
  52. 52.
    Wade JC, Schimpff SC, Hargadon MS, Fortner CL, Young VM, Wiernik PH: A comparison of trimethoprim-sulfamethoxazole plus nystatin with gentamicin plus nystatin in the prevention of infections in acute leukemia. N Engl J Med 304:1057–1062, 1981PubMedGoogle Scholar
  53. 53.
    Schimpff SC: Infection prevention during profound granulocytopenia. Ann Inten Med 93:358–361, 1981Google Scholar
  54. 54.
    Guiot HFL, van der Meer JWM, van Furth R: Selective antimicrobial modulation of human microbial flora: Infection prevention in patients with decreased host defense mechanisms by selective elimination of potentially pathogenic bacteria. J Inf Dis 143:644–654, 1981Google Scholar
  55. 55.
    Van der Waaij D, De Vries JM, Ledderkerk JEC: Colonization resistance of the digestive tract in conventional and antibiotic treated mice. J Hygiene 9:405, 1971Google Scholar
  56. 56.
    Kurpad AV, Shetty PS: Effects of antimicrobial therapy of fecal bulking. Gut 27:55–58, 1986PubMedGoogle Scholar
  57. 57.
    Plaa GL: The enterohepatic circulation.In Handbook of Experimental Pharmacology. JR Gillete (ed). New York, Springer-Verlag, 1975Google Scholar
  58. 58.
    Scheline RR: Metabolism of foreign compounds by gastrointestinal microorganisms. Pharm Rev 25:451–523, 1973PubMedGoogle Scholar
  59. 59.
    Lindenbaum J, Rund DG, Butler Jr. VP, Tse-Eng D, Saha JR: Inactivation of digoxin by the gut flora: Reversal by antibiotic therapy. N Engl J Med 305:789–794, 1982Google Scholar
  60. 60.
    Dobkin JF, Saha JR, Butler Jr VP, Neu HC, Lindenbaum J: Inactivation of digoxin by Eubacterium lentum, an anerobe of the human gut flora. Clin Res 30:551A, 1982Google Scholar
  61. 61.
    Abrams GD, Bauer H, Sprinz H: Influence of the normal flora on mucosal morphology and cellular renewal in the ileum. A comparison of germ-free and conventional mice. Lab Invest 12:355–364, 1963PubMedGoogle Scholar
  62. 62.
    Coates ME, Fuller B: The gnotobiotic animal in the study of gut microbiology.In Microbial Ecology of the Gut, RTJ Clarke, T Bauchop (eds). New York, Academic Press, 1977, 311–346Google Scholar
  63. 63.
    Thompson GR, Trexler PC: Gastrointestinal structure and function in germ-free or gnotobiotic animals. Gut 12:230–235, 1971PubMedGoogle Scholar
  64. 64.
    Gordon HA, Bruchorer-Kardoss E: Effect of normal microbial flora on intestinal surface area. Am J Physiol 201:175–182, 1961PubMedGoogle Scholar
  65. 65.
    Lesher S, Walburg HE, Sacher GA: Generation cycle in the duodenal crypt cells of germ free and conventional mice. Nature 202:884–886, 1964PubMedGoogle Scholar
  66. 66.
    Kenworthy R: Observations on the reaction of the intestinal mucosa to bacterial challenge. J Clin Pathol 24:138–145, 1971Google Scholar
  67. 67.
    Gordon HA:In The Germfree Animal in Research, ME Coates (ed). New York, Academic Press, 1968, 127–150Google Scholar
  68. 68.
    Abrams GD: Microbial effects on mucosal structure and function. Am J Clin Nutr 30:1880–1886, 1977PubMedGoogle Scholar
  69. 69.
    Henegan JB: Influence of microbial flora on xylose absorption in rats and mice. Am J Physiol 205(3):417–420, 1963Google Scholar
  70. 70.
    Bergstrand LO, Gustaffson BE, Holmstrum B, Norin KE: the physiological activity of human fecal flora evaluated by determination of germfree animal characteristics. Acta Chir Scand 147:703–705, 1981PubMedGoogle Scholar
  71. 71.
    Norin KE, Gustaffson BE, Lindblad BS, Midtvedt T: The establishment of some microflora associated biochemical characteristics in feces from children during the first year of life. acta Periatr Scand 74:207–212, 1985Google Scholar
  72. 72.
    Midtvedt T, Carlstedt-Duke B, Hoverstad T, Lingaas E, Norin KE, Saxerholt H, Steinbakk M: Influence of peroral antibiotics upon the biotransformatory activity of the intestinal microflora in healthy subjects. (In press.)Google Scholar
  73. 73.
    Cohen R, Kalser MH, Arteaga I, Yawn E, Frazier D, Leite CA, Ahearn DG, Roth F: Microbial intestinal flora in acute diarrheal disease. JAMA 201: 835–840, 1967PubMedGoogle Scholar
  74. 74.
    Gorbach SL, Banwell JG, Chatterjee BD, Jacobs B, Sack RB: Acute undifferentiated human diarrhea in the tropics. I. Alterations in intestinal microflora. J Clin Invest 50:881–889, 1971PubMedGoogle Scholar
  75. 75.
    Gorbach SL, Banwell JG, Jacobs B, Chatterjee BD, Mitra R, Brigham KL, Neogy KN: Intestinal microflora in Asiatic cholera. I. “Rice-water” stool. J Infect Dis 121:32–37, 1970PubMedGoogle Scholar
  76. 76.
    Gorbach SL, Banwell JG, Jacobs B, Chatterjee BD, Mitra R, Brigham KL, Neogy KN: Intestinal microflora in Asiatic cholera. II. The small bowel. J Infect Dis 121:38–45, 1970PubMedGoogle Scholar
  77. 77.
    Gorbach SL, Kean BH, Evans DG, Evans Jr., DJ, Bessudo D: Travelers' diarrhea and toxigenicEscherichia coli. N Engl J Med 292:933–936, 1975PubMedGoogle Scholar
  78. 78.
    Gorbach SL, Khurana CM: ToxigenicEscherichia coli. A cause of infantile diarrhea in Chicago. N Engl J Med 287:791–795, 1972PubMedGoogle Scholar
  79. 79.
    Guerrant RL, Moore RA, Kirschenfeld PM, Sande MA: Role of toxigenic and invasive bacteria in acute diarrhea of childhood. N Engl J Med 293:567–573, 1975PubMedGoogle Scholar
  80. 80.
    Merson MH, Morris GK, Sack DA, Wells JG, Feeley JC, Sack RB, Creech WB, Kapikian AZ, Gangarosa EJ: Travelers' diarrhea in Mexico. A prospective study of physicians and family members attending a Congress. N Engl J Med 294:1299–1304, 1976PubMedGoogle Scholar
  81. 81.
    Ryder RW, Wachsmuth K, Buxton AE, Evans DG, DuPont HL, Mason E, Barrett FF: Infantile diarrhea produced by heat-stabile enterotoxigenicEscherichia coli. N Engl J Med 295:849–853, 1976PubMedGoogle Scholar
  82. 82.
    Gorbach SL, Neale G, Levitan R, Hepner GW: Alterations in human intstinal microflora during experimental diarrhea. Gut 11:1–6, 1970PubMedGoogle Scholar
  83. 83.
    Hill ID, Mann MD, Moore L, Bowie MD: Duodenal microflora in infants with acute and persistent diarrhea. Arch Dis Child 38:330–334, 1985Google Scholar
  84. 84.
    Cushing AH, Smart J: Gastrointestinal carriage of toxigenic bacteria: Relation to diarrhea and to serum immune response. P Inf Dis 151:114–123, 1985Google Scholar
  85. 85.
    Echeverria P, Louria CJ, Smith AL, Smith D: Variations in enterotoxigenicity of E. coli. J Inf Dis 135:195–200, 1977Google Scholar
  86. 86.
    Bartlett JG, Chang T-W, Taylor NS, Onderdonk AB: Colitis induced byClostridium difficile. Rev Infect Dis 1:370–378, 1976Google Scholar
  87. 87.
    Bartlett JG, Chang T-W, Gurwith M, Gorbach SL, Onderdonk AB: Antibiotic-associated Pseudomembranous colitis due to toxin-producing clostridia. N Engl J Med 298:531–534, 1978PubMedGoogle Scholar
  88. 88.
    Ruddell WSJ, Axon ATR, Findlay JM, Bartholomew BA, Hill MJ: Effect of cimetidine on the gastric bacterial flora. Lancet i:672–674, 1980Google Scholar
  89. 89.
    Bjorneklett A, Fausa O, Midtvedt T: Small bowel bacterial overgrowth in the post gastrectomy syndrome. Scand J Gastroenterol. 18:277–287, 1983PubMedGoogle Scholar
  90. 90.
    Browning GG, Buchan KA, Mackay C: The effect of vagotomy and drainage on the small bowel flora. Gut 15:139–142, 1974PubMedGoogle Scholar
  91. 91.
    Greenlee HB, Gelbart SM, DeOrio AJ, Francescatti DS, Paez J, Reinhardt GF: The influence of gastric surgery on the intestinal flora. Am J Clin Nutr 30:1826–1833, 1977PubMedGoogle Scholar
  92. 92.
    Deane S, Youngs D, Poxon V, Keighley MRB, Alexander-Williams J, Burdon DW: Cimetidine and gastric microflora. Brit J Surg 67:371, 1980Google Scholar
  93. 93.
    Muscroft TJ, Youngs D, Burdon DW, Keighley MRB. Cimetidine and the potential risk of postoperative sepsis. Br J Surg 68:557–559, 1982Google Scholar
  94. 94.
    Snepar R, Poporad GA, Romana JM, Kobasa WD, Kaye D: Effect of cimetidine and antacid on gastric microbial flora. Infect Immun 36:518–524, 1982PubMedGoogle Scholar
  95. 95.
    Ruddell WSJ, Losowsky MS: Severe diarrhea due to small intestinal colonization during cimetidine treatment. Brit Med J 3:273, 1980Google Scholar
  96. 96.
    Gracey M, Suharjono S, Stone DE: Microbial contamination of the gut. Another feature of malnutrition. Am J Clin Nutr 26:1170–1174, 1973PubMedGoogle Scholar
  97. 97.
    Ament ME, Shimoda SS, Saunders DR, Rubin CE: Pathogenesis of steatorrhea in three cases of small intestinal stasis syndrome. Gastroenterol 63:728–747, 1970Google Scholar
  98. 98.
    Goldstein F, Wirts CW, Kowlessar OD: Diabetic diarrhea and steatorrhea. Microbiologic and clinical observations. Ann Intern Med 72:215–218, 1970PubMedGoogle Scholar
  99. 99.
    Gorbach SL, Lal D, Levitan R: Intestinal microflora in Laennec's cirrhosis. J Clin Invest 49:36a, 1970Google Scholar
  100. 100.
    Maldonado JE, Gregg JA, Green PS, Brown AL: Chronic idiopathic intestinal pseudoobstruction. Am J Med 49:203–212, 1970PubMedGoogle Scholar
  101. 101.
    Whalen GE, Soergel KH, Geenen JE: Diabetic diarrhea. Gastroenterol 56:1021–1032, 1969Google Scholar
  102. 102.
    Goldstein F, Cozzolino HJ, Wirts CW: Diarhea and Steatorrhea due to a large solitary duodenal diverticulum. Am J Dig Dis 8:937, 1963PubMedGoogle Scholar
  103. 103.
    McEvoy A, Dutton J, James OFW: Bacterial contamination of the small intestine is an important cause of occult malabsorption in the elderly. Brit Med J 287:789–793, 1983Google Scholar
  104. 104.
    Robert SH, James O, Jarvis EH: Bacterial overgrowth syndrome without “blind loop”: A cause for malnutrition in the elderly. Lancet 2:1193–1195, 1977Google Scholar
  105. 105.
    Polter DE, Boyle JD, Miller LG, Finegold SM: Anaerobic bacteria as cause of the blind loop syndrome. A case report with observations on response to antibacterial agents. Gastroenterol 54:1148–1154, 1968Google Scholar
  106. 106.
    Dawson AM, Isselbacher KJ: Studies of lipid metabolism in the small intestine with observation on the role of bile salts. J Clin Invest 39:730–740, 1960PubMedGoogle Scholar
  107. 107.
    Donaldson Jr, RM: Studies on the pathogenesis of steatorrhea in the blind loop syndrome. J Clin Invest 44:1815–1825, 1965PubMedGoogle Scholar
  108. 108.
    Gracey M: The contaminated small bowel syndrome: pathogenesis, diagnosis, and treatment. Am J Clin Nutr 32:234–243, 1979PubMedGoogle Scholar
  109. 109.
    Isaacs ET, Kim S: The contaminated small bowel syndrome. Am J Med 67:1049–1057, 1979PubMedGoogle Scholar
  110. 110.
    Kim YS, Spritz N, Blum M, Terz J, Sherlock P: The role of altered bile acid metabolism in the steatorrhea of experimental blind loop. J Clin Invest 45:956–962, 1966PubMedGoogle Scholar
  111. 111.
    Drasar BS, Hill MJ, Shiner M: The deconjugation of bile salts by human intestinal bacteria. Lancet 1237–1238, 1966Google Scholar
  112. 112.
    Aries V, Crowther JS, Drasar BS, Hill MJ: Degradation of bile salts of human intestinal bacteria. Gut 10:575–576, 1969PubMedGoogle Scholar
  113. 113.
    Lewis R, Gorbach S: Modification of bile acids by intestinal bacteria. Arch Intern Med 130:545–548, 1972PubMedGoogle Scholar
  114. 114.
    Donaldson Jr, RM: Malabsorption of60Co-labeled cyanocobalamin in rats with intestinal diverticula. I. Evolution of possible mechanisms. Gastroenterol 43:271–281, 1962Google Scholar
  115. 115.
    Donaldson Jr, RM, Corrigon H, Natsios G: Malabsorption of60Co-labeled cyanocobalamin in rats with intestinal diverticula. II. Studies on contents of the diverticula. Gastroenterol 43:282–290, 1962Google Scholar
  116. 116.
    Giannella RA, Broitmen SA, Zamcheck N: Vitamin B12 uptake by intestinal microorganisms: Mechanism and relevance to syndromes of intestinal bacterial overgrowth. J Clin Invest 50:1100–1107, 1971PubMedGoogle Scholar
  117. 117.
    Schjonsby H, Peters TJ, Hoffbrond AV, Tabaqchali S: The mechanism of vitamin B12, malabsorption in the blind loop syndrome. Gut 11:37, 1970 (abstr.)Google Scholar
  118. 118.
    Welkos S, Toskes P, Baer H: Importance of anaerobic bacteria in the cobalamin malabsorption of the experimental rat blind loop syndrome. Gastroenterol 80:313–320, 1981Google Scholar
  119. 119.
    Aarbakke J, Schjonsby H: Value of urinary simple phenol and indican determinations in the diagnosis of the stagnant loop syndrome. Scand J Gastroenterol 11:409–414, 1976PubMedGoogle Scholar
  120. 120.
    Goldstein F, Karacadag S, Wirts CW, Kowlessar OD: Intraluminal small-intestinal utilization of d-xylose by bacteria. A limitation of the d-xylose absorption test. Gastroenterol 59:380–386, 1970Google Scholar
  121. 121.
    Chernov AJ, Doe WF, Gompertz D: Intrajejunal volatile fatty acids in the stagnant loop syndrome. Gut 13:103–106, 1972PubMedGoogle Scholar
  122. 122.
    Prizont R, Whitehead JS, Kim YS: Short chain fatty acids in rats with jejeunal blind loops. I. Analysis of SCFA in small intestine, cecum, feces, and plasma. Gastroenterol 69:1254–1264, 1975Google Scholar
  123. 123.
    Toskes PP, Giannella RA, Jervis HR, Rout WR, Takeuchi A: Small intestinal mucosal injury in the experimental blind loop syndrome. Gastroenterol 68:1193–1203, 1975Google Scholar
  124. 124.
    Giannella RA, Rout WR, Toskes PP: Jejunal brush border injury and impaired sugar and amino acid uptake in the blind loop syndrome. Gastroenterol 67:965–974, 1974Google Scholar
  125. 125.
    Gracey M, Papadimitriou J, Bower G: Ultrastructural changes in the small intestines of rats with self-filling blind loops. Gastroenterol 67:646–651, 1974Google Scholar
  126. 126.
    Gracey M, Thomas J, Houghton M: Effect of stasis on intestinal enzyme activities. Aust NZ J Med 5:141–144, 1975Google Scholar
  127. 127.
    Jonas A, Flanagan PR, Forstner GG: Pathogenesis of mucosal injury in the blind loop syndrome. Brush border enzyme activity and glycoprotein degradation. J Clin Invest 60:1321–1330, 1977PubMedGoogle Scholar
  128. 128.
    Jonas A, Krishnan C, Forstner G: The role of unconjugated bile salts and bacterial proteins as causes of mucosal injury in the contaminated bowel syndrome. Gastroenterol 72:1076, 1977, (Abstr)Google Scholar
  129. 129.
    Riepe SP, Goldstein J, Alpers DH: Effect of secreted Bacteroides proteases on human intestinal brush border hydrolases. J Clin Invest 66:314–322, 1980PubMedGoogle Scholar
  130. 130.
    Klipstein GA: Tropical sprue. Gastroenterol 1:946–949, 1968Google Scholar
  131. 131.
    Klipstein FA: Recent advances in tropical malabsorption. Scand J Gastroenterol Suppl 6:93–114, 1970Google Scholar
  132. 132.
    Cook GC: Tropical sprue: Implications of Manson's concept. J Roy Coll Phys 12:329–349, 1978Google Scholar
  133. 133.
    Mathan VI, Baker SJ: Epidemic tropical sprue and other epidemics of diarrhea in south Indian villages. Am J Clin Nutr 21:1077–1087, 1968PubMedGoogle Scholar
  134. 134.
    Bhat P, Shantakumari S, Rajan D, Mathan VL, Kapadia CR, Swarnabai C, Baker SJ: Bacterial flora of the gastro-intestinal tract in Southern Indian control subjects and patients with tropical sprue. Gastroenterol 62:11–21, 1972Google Scholar
  135. 135.
    Gorbach SL, Banwell JG, Jacobs B, Chatterjee BD, Mitra R, Sen NN, Guha Mazumder DN: Tropical sprue and malnutrition in West Bengal. I. Intestinal microflora and absorption. Am J Clin Nutr 23:1545–1558, 1970PubMedGoogle Scholar
  136. 136.
    Gorbach SL, Mitra R, Jacobs B, Banwell JG, Chatterjee BD, Guha Mazumder DN: Bacterial contamination of the upper small bowel in tropical sprue. Lancet 1:74–77, 1969PubMedGoogle Scholar
  137. 137.
    Tomkins AM, Drasar BS, James WPT: Bacterial colonization of jejunal mucosa in acute tropical sprue. Lancet i:59–61, 1975Google Scholar
  138. 138.
    Klipstein FA, Holdeman LV, Corcino JJ, Moore WEC: Enterotoxigenic intestinal bacteria in tropical sprue. Ann Intern Med 79:632–641, 1973PubMedGoogle Scholar
  139. 139.
    Klipstein FA, Goetsch CA, Engert RF, Short HB, Schenk EA: Effect of monocontamination of germfree rats by enterotoxigenic coliform bacteria. Gastroenterol 79:341–348, 1979Google Scholar
  140. 140.
    Banwell JG, Gorbach SL, Mitra R, Cassells JS, Guha Mazumder DN, Thomas J, Hardley JH: Tropical sprue and malnutrition in West Bengal. II. Fluid and electrolyte transport in the small intestine. Am J Clin Nutr 21:1559–1568, 1970Google Scholar
  141. 141.
    Banwell JG, Gorbach SL: Tropical sprue. Gut 10:328–333, 1969PubMedGoogle Scholar
  142. 142.
    Gerson CD, Kent TH, Saha Jr, Siddiqi N, Lindenbaum J: Recovery of small-intestinal structure and function after residence in the tropics. II. Studies in Indians and Pakistanis living in New York City. Ann Intern Med 75:41–48, 1971PubMedGoogle Scholar
  143. 143.
    Cook GC: Aetiology and pathogenesis of postinfective tropical malabsorption (tropical sprue). Lancet i:721–723, 1984Google Scholar
  144. 144.
    Armstrong B, Doll R: Environmental factors and cancer incidence and mortality in different countries, with special references to dietary practices. Int J Cancer 15:617–631, 1975PubMedGoogle Scholar
  145. 145.
    Burkitt DP: Epidemiology of cancer of the colon and rectum. Cancer 28:3–13, 1971PubMedGoogle Scholar
  146. 146.
    Doll R: The geographical distribution of cancer. Br J Cancer 23:1–8, 1969PubMedGoogle Scholar
  147. 147.
    Drasar BS, Irving D: Environmental factors and cancer of the colon and breast. Br J Cancer 27:167–172, 1973PubMedGoogle Scholar
  148. 148.
    Reddy BS, Mastromarino A, Wynder EL: Further leads on metabolic epidemiology of large bowel cancer. Cancer Res 35:3403–3406, 1975PubMedGoogle Scholar
  149. 149.
    Wynder EL: The epidemiology of large bowel cancer. Cancer Res 35:3388–3394, 1975PubMedGoogle Scholar
  150. 150.
    Wynder EL, Kajitani T, Ishikawa S, Dodo H, Takano A: Environmental factors of cancer of the colon and rectum. Cancer 23:1210–1220, 1969PubMedGoogle Scholar
  151. 151.
    Crowther JS, Drasar BS, Hill MJ, MacLennan R, Magnin D, Peach S, Teoh-Chan CH: Faecal steroids and bacteria and large bowel cancer in Hong Kong by socioeconomic groups. J Cancer 34:191–198, 1976Google Scholar
  152. 152.
    Haenszel R, Berg JW, Segi M, Kurihara M, Locke FB: Large-bowel cancer in Hawaiian Japanese. J Natl Cancer Inst 51:1765–1779, 1973PubMedGoogle Scholar
  153. 153.
    Drasar BS, Jenkins DJA: Bacteria, diet and large bowel cancer. Am J Clin Nutr 29:1410–1416, 1976PubMedGoogle Scholar
  154. 154.
    Hill MJ: Diet and the human intestinal bacterial flora. Canc Res 41:3778–3780, 1981Google Scholar
  155. 155.
    Vargo D, Moskovitz M, Floch MH: Faecal bacterial flora in cancer of the colon. Gut 21:701–705, 1980PubMedGoogle Scholar
  156. 156.
    Hill MJ: The role of colon anaerobes in the metabolism of bile acids and steroids, and its relation to colon cancer. Cancer 36:2387–2400Google Scholar
  157. 157.
    Weisburger JH: Colon carcinogens: Their metabolism and mode of action. Cancer 28:60–70, 1971PubMedGoogle Scholar
  158. 158.
    Goldin BR, Gorbach SL: The relationship between diet and rat fecal bacterial enzymes implicated in colon cancer. J Natl Cancer Inst 57:371–375, 1976PubMedGoogle Scholar
  159. 159.
    Laqueur GL, Mickelson O, Whiting MG, Kurland LT: Carcinogenic properties of nuts from Cyclos circonilis. J Natl Cancer Inst 31:919–951, 1963PubMedGoogle Scholar
  160. 160.
    Laqueur GL, Spatz M: Toxicology of cycasin. Cancer Res 28:2262–2267, 1968PubMedGoogle Scholar
  161. 161.
    Laqueur GL: The induction of intestinal neoplasia with the glycoside of cycasin and its aglycone. Virchow Arch Path Anat 340:151–163, 1965PubMedGoogle Scholar
  162. 162.
    Laqueur GL, McDaniel EG, Matsumoto H: Tumor induction in germfree rats with methylazoxymethanol (MAM) and synthetic MAM acetate. J Natl Cancer Inst 39:355–371, 1967PubMedGoogle Scholar
  163. 163.
    Hill MJ: Bacteria and the etiology of colonic cancer. Cancer 34:815–818, 1974PubMedGoogle Scholar
  164. 164.
    Hill MJ, Drasar BS, Williams REO: Faecal bile-acids and clostridia in patients with cancer of the large bowel. Lancet i:535–538, 1975Google Scholar
  165. 165.
    Kay RM: Effects of diet on the fecal excretion and bacterial modification of acidic and neutral steroids, and implications for colon carcinogenesis. Cancer Res 42:3774–3777, 1981Google Scholar
  166. 166.
    Mastromarino A, Reddy BS, Wynder EL: Metabolic epidemiology of colon cancer: enzymic activity of fecal flora. Am J Clin Nutr 29:1455–1460, 1976PubMedGoogle Scholar
  167. 167.
    Mower HF, Ray RM, Shoff R, Stemmermann GN, Nomura A, Glober GA, Kamiyama S, Shimada A, Yamakawa H: Fecal bile acids in two Japanese populations with different colon cancer risks. Cancer Res 39:328–331, 1979PubMedGoogle Scholar
  168. 168.
    Reddy BS, Wynder EL: Large-bowel carcinogenesis: Fecal constituents of populations with diverse incidence rates of colon cancer. J Natl Cancer Inst 50:1437–1442, 1973PubMedGoogle Scholar
  169. 169.
    White BA, Lipsky RL, Fricke RJ, Hylemon PB: Bile acid induction specificity of 7-alpha-dehydroxylase activity in an intestinalEubacterium species. Steroids 35:103–109, 1980PubMedGoogle Scholar
  170. 170.
    Hill MJ: Bile, bacteria and bowel cancer. Gut 24:871–875, 1983PubMedGoogle Scholar
  171. 171.
    Wilpart M, Mainguet P, Maskens A, Roberfroid M: Mutagenicity of 1,2-dimethylhydrazine towardsSalmonella typhimurium, co-mutagenic effect of secondary bile acids. Carcinogenesis 4:45–48, 1983PubMedGoogle Scholar
  172. 172.
    Weisburger JH, Grantham PM, Horton RE, Weisburger EK: Metabolism of the carcinogen N-hydroxy-N-2-fluorenyl-acetamide in germ free rats. Biochem Pharmacol 19:151–162, 1970PubMedGoogle Scholar
  173. 173.
    Fischer LJ, Millburn P, Smith RL, Williams RT: The fate of (14C) stilboestriol in the rat. Biochem J 100:698, 1966Google Scholar
  174. 174.
    Granthame PH, Horton RE, Weisberger EK, Weisberger JH: Metabolism of the carcinogen N-2-fluoroenylacetamide in germ free and conventional rats. Biochem Pharmacol 19:163–171, 1976Google Scholar
  175. 175.
    Reddy BS, Weisburger JH, Wynder EL: Fecal bacterial beta-glucuronidase: Control by diet. Science 183:416–417, 1974PubMedGoogle Scholar
  176. 176.
    Gillette JR, Kamm JJ, Sasame HA: Mechanism of p-nitrobenzoate reduction in mice: The possible role of cytochrome P-450 in liver microsomes. Mol Pharmacol 4:541–548, 1968PubMedGoogle Scholar
  177. 177.
    Kato R, Oshima R, Takanara A: Studies on the mechanism of nitro reduction by rat liver. Mol Pharmacol 5:487–494, 1962Google Scholar
  178. 178.
    Weisburger JH, Weisburger EK: Biochemical, formation and pharmacological, toxicological, and pathological properties of hydroxylamines and hydroxamic acid. Pharmacol Rev 25:1, 1973PubMedGoogle Scholar
  179. 179.
    Goldin B, Dwyer J, Gorbach SL, Gordon W, Swenson L: Influence of diet and age on fecal bacterial enzymes. Am J Clin Nutr 31:S136-S140, 1978PubMedGoogle Scholar
  180. 180.
    Goldin BR: The role of diet and the intestinal flora in the etiology of large bowel cancer. Internatl Symposium on Colorectal Cancer, (Abstr), New York, 1979Google Scholar
  181. 181.
    Goldin BR, Gorbach SL: Diet and its effect on enzymes linked to colon cancer. Digestion 16(3):240–241, 1977 (Abstr)Google Scholar
  182. 182.
    Reddy BS, Narisawa T, Weisberger JH: Effect of a diet with high levels of protein and fat on colon carcinogenesis in F344 rats treated with 1,2-Dimethylhydrazine. J Natl Cancer Inst 57:567–569, 1976PubMedGoogle Scholar
  183. 183.
    Reddy BS, Narisawa T, Wright P, Yukusich D, Weisburger JH, Wynder EL: Colon carcinogenesis with azoxymethane and dimethylhydrazine in germ-free rats. Cancer Res 35:287–290, 1975PubMedGoogle Scholar
  184. 184.
    Goldin BR, Gorbach SL: Effect ofLactobacillus acidophilus dietary supplements on 1,2-Dimethylhydrazine dihydrochloride induced intestinal cancer in rats. J Natl Cancer Inst 64:263–265, 1980PubMedGoogle Scholar
  185. 185.
    Reddy BS, Watanabe K: Effect of intestinal microflora on 3,2′-dimethyl-4-aminobiphenyl-induced carcinogenesis in F344 rats. J Natl Cancer Inst 61:1269–1271, 1978PubMedGoogle Scholar
  186. 186.
    Reddy BS, Ohmori T: Effect of intestinal microflora and dietary fat on 3,2′-dimethyl-4-aminobiphenyl-induced colon carcinogenesis in F344 rats. Cancer Res 41:1363–1367, 1981PubMedGoogle Scholar
  187. 187.
    Goldin BR, Swenson L, Dwyer J, Sexton M, Gorbach SL: Effect of diet and Lactobacillus supplements on human fecal bacterial enzymes. J Natl Cancer Inst 64:255–262, 1980PubMedGoogle Scholar
  188. 188.
    Goldin BR, Gorbach SL: Effect of antibiotics on incidence of rat intestinal tumors induced by 1,2-Dimethylhydrazine Dihydrochloride. J Natl Cancer Inst 67:877–880, 1981PubMedGoogle Scholar
  189. 189.
    Takada H, Hirook T, Hiramatsu Y, Yamamato M: Effect of beta-glucuronidase inhibitor on azoxymethane-induced colonic carcinogenesis inhibitor on azoxymethane-induced colonic carcinogenesis in rats. Cancer Res 42:331–334, 1982PubMedGoogle Scholar
  190. 190.
    Report from the International Agency for Research on Cancer Intestinal Microecology Group: Dietary fibre, transit-time, fecal bacteria, steroids and colon cancer in two Scandinavian populations. Lancet ii:207–211, 1977Google Scholar
  191. 191.
    Goldin BR, Gorbach SL: Alterations in fecal microflora enzymes related to diet, age, Lactobacillus supplements, and dimethylhydrazine. Cancer 40:2421–2426, 1977PubMedGoogle Scholar
  192. 192.
    Bruce WR, Dion PW: Studies relating to fecal mutagen. Am J Clin Nutrition 33:2511–2512, 1980Google Scholar
  193. 193.
    Bruce WR, Varghese AJ, Furrer A, Land PC: A mutagen in the feces of normal humans.Google Scholar
  194. 194.
    Kuhnlein U, Bergstrom D, Kuhnlein H: Mutagens in feces from vegetarians and non-vegetarians. Mutation Res 85:1–12, 1981PubMedGoogle Scholar
  195. 195.
    Mower HF, Ichinotsubo D, Wang LW, Mandel M, Stemmermann G, Nomura A, Heilbrun L, Kamiyama S, Shimada A: Fecal mutagens in two Japanese populations with different colon cancer risks. Cancer Res 42:1164–1169, 1982PubMedGoogle Scholar
  196. 196.
    Van Tassel RL, MacDonald DK, Wilkins TD: Production of a fecal mutagen byBacteroides spp. Infect Immun 37:975–980, 1982PubMedGoogle Scholar
  197. 197.
    Hirai N, Kingston GI, Van Tassell RL, Wilkins TD: Structure elucidation of a potent mutagen from human feces. J Amer Chem Soc 104:6150–6154, 1982Google Scholar
  198. 198.
    Adlercreutz H, Martin F: Oestrogen in human pregnancy faeces. Acta Endocrinologica 83:410–419, 1976PubMedGoogle Scholar
  199. 199.
    Lombardi P, Goldin B, Boutin E, Gorbach SL: Metabolism of androgens and estrogens by human fecal microorganisms. J Steroid Biochem 9:795–801, 1978PubMedGoogle Scholar
  200. 200.
    Sandberg AA, Slaunwhite Jr, WR: Studies on phenolic steroids in human subjects. VII. Metabolic fate of estriol and its glucuronide. J Clin Invest 44:694–702, 1965PubMedGoogle Scholar
  201. 201.
    Inoue N, Sandberg AA, Graham JB, Slaunwhite Jr, WR: Studies on phenolic steroids in human subjects. IX. Role of the intestine in the conjugation of estriol. J Clin Invest 48:390–396, 1969PubMedGoogle Scholar
  202. 202.
    Goldin BR, Adlercreutz H, Gorbach SL, Warram JH, Dyer JT, Swenson L, Woods MN: Estrogen excretion patterns and plasma level in vegetarian and omnivorous women. N Engl J Med 307:1542–1547, 1982PubMedGoogle Scholar
  203. 203.
    Adlercreutz H, Martin F, Tikkanen MJ, Pulkkinen M: Effect of ampicillin administration on the excretion of twelve oestrogens in pregnancy urine. Acta Endocrinologica 80:551–557, 1975PubMedGoogle Scholar
  204. 204.
    Pulkkinen MO, Willman K: Maternal estrogen levels during penicillin treatment. Br Med J 4:48, 1971PubMedGoogle Scholar
  205. 205.
    Pulkkinen MO, Willman K: Reduction of maternal estrogen excretion by neomycin. Am J Ob Gyn 115:1153, 1973Google Scholar
  206. 206.
    Adlercreutz H, Martin F, Lehtinen T, Tikkanen MJ, Pulkkinen MO: Effect of ampicillin administration on plasma conjugated and unconjugated estrogen and progesterone levels in pregnancy. Am J Obstet Gynecol 128:266–271, 1977PubMedGoogle Scholar
  207. 207.
    Martin F, Peltonen J, Laatikainen T, Pulkkinen M, Adlercreutz H: Excretion of progesterone metabolites and estriol in faeces from pregnant women during ampicillin administration. J Steroid Biochem 6:1339–1346, 1975PubMedGoogle Scholar
  208. 208.
    Martin F, Bhargava AS, Adlercreutz H: Androgen metabolism in the beagle: Endogenous C 19 0 2 metabolites in bile and faeces and the effect of ampicillin administration. J Steroid Biochem 8:753–760, 1977PubMedGoogle Scholar
  209. 209.
    Dossetar J: Drug interaction with oral contraceptives. Br Med J 4:467–468, 1975Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • Gary L. Simon
    • 1
  • Sherwood L. Gorbach
  1. 1.Department of MedicineThe George Washington University Medical CenterWashington, D.C.

Personalised recommendations