Monatshefte für Mathematik

, Volume 90, Issue 3, pp 233–235 | Cite as

Some remarks on invariant means

  • G. A. Margulis


It is shown that certain invariant means are unique.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Borel, A.: Some finiteness properties of Adele groups over number fields. Publ. Math. IHES16, 1–30 (1963).Google Scholar
  2. [2]
    Delaroche, C., andA. Kirillov: Sur les relations entre l'espace d'un groupe et la structure de ses sous-groupes fermes. Séminaire Bourbaki, Exposé 343, 1968. Lecture Notes Math. 180. Berlin-Heidelberg-New York. Springer. 1972.Google Scholar
  3. [3]
    Del Junco, A., andJ. Rosenblatt: Counterexamples in ergodic theory and number theory. Math. Ann.245, 185–197 (1979).Google Scholar
  4. [4]
    Kazhdan, D.: On a connection of the dual space of the group with the structure of its closed subgroups. (In Russian.) Funct. Anal. Prilozhen1, N1, 71–74 (1967). (Math. Rev.35, 288.)Google Scholar
  5. [5]
    Losert, V., andH. Rindler: Almost invariant sets. Bull. London Math. Soc., to appear.Google Scholar
  6. [6]
    Platonof, B.: A problem of strong approximation of the Kneser-Tits hypothesis for algebraic groups. Izv. Ak. Nauk SSSR33, 1211–1220 (1969); supplement:34, 775–777 (1970). (In Russian.)Google Scholar
  7. [7]
    Rosenblatt, J.: Haar measure is the unique invariant mean on the torus. Preprint.Google Scholar
  8. [8]
    Schmidt, K.: Preprint.Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • G. A. Margulis
    • 1
  1. 1.Institute of Information Transmission ProblemsAcademy of Sciences of the USSRMoscowUnion of Soviet Socialist Republics

Personalised recommendations