Monatshefte für Mathematik

, Volume 77, Issue 5, pp 462–474

Subshifts of finite type and sofic systems

  • Benjamin Weiss
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Adler, R. L., andB. Weiss: Similarity of automorphisms of the torus. Memoirs AMS98, 1–43 (1970).Google Scholar
  2. [2]
    Bowen, R.: Topological entropy and axiomA. Global analysis. Proc. Symp. Pure Math.14, 23–41 (1970).Google Scholar
  3. [3]
    Bowen, R.: Markov partitions for axiomA diffeomorphisms. Amer. J. Math.92, 725–747 (1970).Google Scholar
  4. [4]
    Bowen, R., andO. E. Lanford.III: Zeta functions of restrictions of the shift transformation. Proc. Symp. Pure Math.14, 43–50 (1970).Google Scholar
  5. [5]
    Friedman, N. A., andD. Ornstein: On isomorphisms of weak Bernoulli transformations. Adv. in Math.5, 365–394 (1970).Google Scholar
  6. [6]
    Furstenberg, H.: Stationary processes and prediction theory. Annals of Math. Studies 44. Princeton: 1960.Google Scholar
  7. [7]
    Gantmacher, F. R.: The theory of matrices, Vol. II. English translation: New York 1959.Google Scholar
  8. [8]
    Hirsch, M., J. Palis, C. Pugh andM. Shub: Neighborhoods of hyperbolic sets. Inventiones math.9, 121–134 (1970).Google Scholar
  9. [9]
    Krieger, W.: On the uniqueness of the equilibrium state. (To appear.)Google Scholar
  10. [10]
    Parry, W.: Intrinsic Markov chains. Transactions AMS112, 55–66 (1964).Google Scholar
  11. [11]
    Rokhlin, V. A.: Lectures on entropy theory for transformations with invariant measure. Usp. Math. Nauk22, 3–56 (1967).Google Scholar
  12. [12]
    Rosenblatt, M.: Markov processes. Structure and asymptotic behavior. Grundl. Math. Wiss. 184. Berlin-Heidelberg-New York: Springer. 1971.Google Scholar
  13. [13]
    Sigmund, K.: On dynamical systems with the specification property. Trans. Amer. Math. Soc.188. (To appear.)Google Scholar
  14. [14]
    Sinai, Y. G.: Markov partitions andC-diffeomorphisms. Funct. Anal. Appl.2, 64–89 (1968).Google Scholar
  15. [15]
    Smale, S.: Differentiable dynamical systems. Bulletin AMS73, 747–817 (1967).Google Scholar
  16. [16]
    Weiss, B.: Intrinsically ergodic systems. Bulletin AMS76, 1266–1269 (1970).Google Scholar
  17. [17]
    Williams, B.: Classification of symbol spaces of finite type. Ann. Math. (To appear.)Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • Benjamin Weiss
    • 1
  1. 1.Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations