Probability Theory and Related Fields

, Volume 102, Issue 1, pp 1–17

# On the almost sure central limit theorem and domains of attraction

• István Berkes
Article

## Summary

We give necessary and sufficient criteria for a sequence (Xn) of i.i.d. r.v.'s to satisfy the a.s. central limit theorem, i.e.,
$$\mathop {\lim }\limits_{N \to \infty } \frac{1}{{\log N}}\sum\limits_{k \leqslant N} {\frac{1}{k}I} \left\{ {\frac{{S_k }}{{a_k }} - b_k< x} \right\} = \phi (x)\,\,\,\,{\text{a}}{\text{.s}}{\text{.}}\,\,{\text{for}}\,{\text{all}}\,x$$
for some numerical sequences (an), (bn) whereSn=X1+...+Xn andI denotes indicator function. Our method leads also to new results on the limit distributional behavior ofSn/an−bn along subsequences (“partial attraction”), as well as to necessary and sufficient criteria for averaged versions of the central limit theorem such as
$$\mathop {\lim }\limits_{N \to \infty } \frac{1}{N}\sum\limits_{k \leqslant N} P \left( {\frac{{S_k }}{{a_k }} - b_k< x} \right) = \phi (x)\,\,\,\,\,{\text{for}}\,{\text{all}}\,x.$$

60F05 60F15

## References

1. 1.
Berkes, I., Dehling, H.: Some limit theorems in log density. Ann. Probab.21, 1640–1670 (1993)
2. 2.
Berkes, I., Dehling, H.: On the almost sure central limit theorem for random variables with infinite variance. J. Theor. Probab.7, 667–680 (1994)
3. 3.
Berkes, I., Dehling, H., Móri, T.: Counterexamples related to the a.s. central limit theorem. Stud. Sci. Math. Hung.26, 153–164 (1991)
4. 4.
Brosamler, G.: An almost everywhere central limit theorem. Math. Proc. Cambridge Philos. Soc.104, 561–574 (1988)
5. 5.
Feller, W.: An introduction to probability theory and its applications, Vol. II, 2nd Edition. New York: Wiley 1971
6. 6.
Fisher, A.: A pathwise central limit theorem for random walks (preprint 1989)Google Scholar
7. 7.
Kuipers, L., Niederreiter, H.: Uniform distribution of sequences. New York: Wiley 1974
8. 8.
Lacey, M.T., Philipp, W.: A note on the almost everywhere central limit theorem. Statist. Probab. Lett.9, 201–205 (1990)
9. 9.
Lévy, P.: Théorie de l'addition des variables aléatoires. Paris: Gauthier-Villars 1937
10. 10.
Loève, M.: Probability theory. New York: Van Nostrand (1955)
11. 11.
Schatte, P.: On strong versions of the central limit theorem. Math. Nachr.137, 249–256 (1988)