Probability Theory and Related Fields

, Volume 102, Issue 1, pp 1–17 | Cite as

On the almost sure central limit theorem and domains of attraction

  • István Berkes
Article

Summary

We give necessary and sufficient criteria for a sequence (Xn) of i.i.d. r.v.'s to satisfy the a.s. central limit theorem, i.e.,
$$\mathop {\lim }\limits_{N \to \infty } \frac{1}{{\log N}}\sum\limits_{k \leqslant N} {\frac{1}{k}I} \left\{ {\frac{{S_k }}{{a_k }} - b_k< x} \right\} = \phi (x)\,\,\,\,{\text{a}}{\text{.s}}{\text{.}}\,\,{\text{for}}\,{\text{all}}\,x$$
for some numerical sequences (an), (bn) whereSn=X1+...+Xn andI denotes indicator function. Our method leads also to new results on the limit distributional behavior ofSn/an−bn along subsequences (“partial attraction”), as well as to necessary and sufficient criteria for averaged versions of the central limit theorem such as
$$\mathop {\lim }\limits_{N \to \infty } \frac{1}{N}\sum\limits_{k \leqslant N} P \left( {\frac{{S_k }}{{a_k }} - b_k< x} \right) = \phi (x)\,\,\,\,\,{\text{for}}\,{\text{all}}\,x.$$

Mathematics Subject Classification (1991)

60F05 60F15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berkes, I., Dehling, H.: Some limit theorems in log density. Ann. Probab.21, 1640–1670 (1993)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Berkes, I., Dehling, H.: On the almost sure central limit theorem for random variables with infinite variance. J. Theor. Probab.7, 667–680 (1994)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Berkes, I., Dehling, H., Móri, T.: Counterexamples related to the a.s. central limit theorem. Stud. Sci. Math. Hung.26, 153–164 (1991)MathSciNetMATHGoogle Scholar
  4. 4.
    Brosamler, G.: An almost everywhere central limit theorem. Math. Proc. Cambridge Philos. Soc.104, 561–574 (1988)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Feller, W.: An introduction to probability theory and its applications, Vol. II, 2nd Edition. New York: Wiley 1971MATHGoogle Scholar
  6. 6.
    Fisher, A.: A pathwise central limit theorem for random walks (preprint 1989)Google Scholar
  7. 7.
    Kuipers, L., Niederreiter, H.: Uniform distribution of sequences. New York: Wiley 1974MATHGoogle Scholar
  8. 8.
    Lacey, M.T., Philipp, W.: A note on the almost everywhere central limit theorem. Statist. Probab. Lett.9, 201–205 (1990)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Lévy, P.: Théorie de l'addition des variables aléatoires. Paris: Gauthier-Villars 1937MATHGoogle Scholar
  10. 10.
    Loève, M.: Probability theory. New York: Van Nostrand (1955)MATHGoogle Scholar
  11. 11.
    Schatte, P.: On strong versions of the central limit theorem. Math. Nachr.137, 249–256 (1988)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • István Berkes
    • 1
  1. 1.Mathematical Institute of the Hungarian Academy of SciencesBudapestHungary

Personalised recommendations