Digestive Diseases and Sciences

, Volume 28, Issue 3, pp 216–224 | Cite as

Role of the liver in clearance and excretion of circulating carcinoembryonic antigen (CEA)

  • Peter Thomas
  • Norman Zamcheck


CEA is a glycoprotein with a molecular weight of 200,000 containing 55%–65% carbohydrate. The removal of only two sialic acid residues result in rapid uptake from the circulation by the liver and catabolism in the lysosomes. There is a receptor on the plasma membrane of the hepatocyte (hepatic binding protein) which recognizes galactosyl residues. About 70% of125I-labeled intact CEA is cleared by the liver in 1 hr. The exposure of terminal galactose residues by removing sialic acids determines the rate of clearance. CEA is probably initially taken up by Kupffer cells and transferred to hepatocytes. About 10% of CEA added to an isolated perfused liver appears in bile. Biliary duct obstruction and cholestasis may elevate plasma CEA levels due to detergent effects on the liver cell receptors.


Galactose Sialic Acid Cell Receptor Cholestasis Kupffer Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bocci V: The role of sialic acid in determining the life of circulating cells and glycoproteins. Experientia 32:135–146, 1976Google Scholar
  2. 2.
    Ashwell G, Morell AG: The role of surface carbohydrates in the hepatic recognition and transport of circulating glycoproteins. Adv Enzymol Relat Areas Mol Biol 41:99–128, 1974Google Scholar
  3. 3.
    Moore TL, Dhar P, Zamcheck N, Keeley A, Gottlieb L, Kupchik HZ: Carcinoembryonic antigen(s) in liver disease. I. Clinical and morphological studies. Gastroenterology 63:88–94, 1972Google Scholar
  4. 4.
    Lurie BB, Loewenstein MS, Zamcheck N: Elevated carcinoembryonic antigen levels and biliary tract obstruction. J Am Med Assoc 233:326–330, 1975Google Scholar
  5. 5.
    O'Brien M, Bronstein B, Zamcheck N, Saravis C, Burke B, Gottlieb LS: Cholestasis and hepatic metastases: A factor contributing to extreme elevations of carcinoembryonic antigen. J Natl Cancer Inst 64:1291–1294, 1980Google Scholar
  6. 6.
    Zamcheck N, Martin EW: Factors controlling the circulating CEA level in pancreatic cancer and some clinical correlations. Cancer 47:1620–1627, 1981Google Scholar
  7. 7.
    Westwood JH, Bessell EM, Bukhari MA, Thomas P, Walker JM: Studies on the structure of the carcinoembryonic antigen. 1. Some deductions on the basis of chemical degradations. Immunochemistry 11:811–818, 1974Google Scholar
  8. 8.
    Bessell EM, Thomas P, Westwood JH: Multiple Smith-degradations of carcinoembryonic antigen (CEA) and of asialo CEA. Carbohydr Res 45:257–268, 1975Google Scholar
  9. 9.
    Egan ML, Pritchard DG, Todd CW, Go VLW: Isolation and immunochemical and chemical characterization of carcinoembryonic antigen-like substances in colon lavages of healthy individuals. Cancer Res 37:2638–2643, 1977Google Scholar
  10. 10.
    Hammarstrom S, Engvall E, Johannsson BG, Svensson S, Sundblad G, Goldstein IJ: Nature of the tumor-associated determinant(s) of carcinoembryonic antigen. Proc Natl Acad Sci USA 72:1528–1532, 1975Google Scholar
  11. 11.
    Thomas P, Turberville C, Westwood JH, Hems DA: The fate of subfractions of isoelectric focused carcinoembryonic antigen (CEA) in a rat liver perfusion system. Protides Biol Fluids Proc Colloq 24:419–423, 1976Google Scholar
  12. 12.
    Shively JE, Kessler MJ, Todd CW: Amino-terminal sequences of the major tryptic peptides obtained from carcinoembryonic antigen by digestion with trypsin in the presence of Triton X-100. Cancer Res 38:2199–2208, 1978Google Scholar
  13. 13.
    Westwood JH, Thomas P: Studies on the structure and immunological activity of carcinoembryonic antigen. The role of disulphide bonds. Br J Cancer 32:708–719, 1975Google Scholar
  14. 14.
    Slayter HS, Coligan JE: Electron microscopy and physical characterization of the carcinoembryonic antigen. Biochemistry 14:2323–2330, 1975Google Scholar
  15. 15.
    Westwood JH: Carcinoembryonic antigen, its chemstry.In Tumor Markers, Proceedings of the Sixth Tennovus Workshop. K Griffith, AM Neville, GG Pierrepoint (eds). London, Alpha Omega Publishing, 1978, pp 15–28Google Scholar
  16. 16.
    Van Der Hamer CJA, Morell AG, Scheinberg IH, Hickman J, Ashwell G: Physical and chemical studies on ceruloplasmin IX: The role of galactosyl residue in the clearance of ceruloplasmin from the circulation. J Biol Chem 245:4397–4402, 1970Google Scholar
  17. 17.
    Morell AG, Gregoriadis G, Scheinberg IH, Hickman J, Ashwell G: The role of sialic acid in determining the survival of glycoproteins in the circulation. J Biol Chem 146:1461–1467, 1971Google Scholar
  18. 18.
    Thomas P, Hems DA: The hepatic clearance of circulating carcinoembryonic antigen and asialo carcinoembryonic antigen by the rat. Biochem Biophys Res Commun 67:1205–1209, 1975Google Scholar
  19. 19.
    Hudgin RL, Pricer Jr WE, Ashwell G, Stockert Jr, Morell AG: The isolation and properties of a rabbit liver binding protein specific for asialoglycoproteins. J Biol Chem 249:5536–5543, 1974Google Scholar
  20. 20.
    Prieels JP, Pizzo SV, Glasgow LR, Paulson JR, Hill RL: Hepatic receptor that specifically binds oligosaccarides containing fucosyl α1-3N-acetyl glucosamine linkages. Proc Natl Acad Sci USA 75:2215–2219, 1978Google Scholar
  21. 21.
    Stockert RJ, Morell AG, Scheinberg IH: The existence of a second route for the transfer of certain glycoproteins from the circulation into the liver. Biochem Biophys Res Commun 68:988–993, 1976Google Scholar
  22. 22.
    Achord DT, Brot FE, Bell CE, Sly WS: Human β-glucuroni-dasein vivo clearance andin vitro uptake by a glycoprotein recognition system on reticuloendothelial cells. Cell 15:269–274, 1978Google Scholar
  23. 23.
    Kozutsumi Y, Kawasaki T, Yamashina I: Isolation and characterization of a mannan-binding protein from rabbit serum. Biochem Biophys Res Commun 95:658–664, 1980Google Scholar
  24. 24.
    Neufeld EF, Ashwell G: Carbohydrate recognition systems for receptor-mediated pinocytosis.In The Biochemistry of Glycoproteins and Proteoglycans. WJ Lennarz (ed). Plenum Press, 1980, pp 241–266Google Scholar
  25. 25.
    Shuster J, Silverman M, Gold P: Metabolism of human carcinoembryonic antigen in xenogeneic animals. Cancer Res 33:65–68, 1973Google Scholar
  26. 26.
    Primus FJ, Goldenberg DM, Hansen HJ: Metabolism of carcinoembryonic antigen (CEA) in a human tumor-hamster host model. Fed Proc 32:834, 1973 (abstract)Google Scholar
  27. 27.
    Coligan JE, Henkart PA, Todd CW, Terry WD: Heterogeneity of the carcinoembryonic antigen. Immunochemistry 12:491–599, 1975Google Scholar
  28. 28.
    Turberville C, Darcy DA, Laurence DJR, Johns EW, Neville AM: Studies on carcinoembryonic antigen (CEA) and a related glycoprotein CCEA-2 preparation and chemical characterization. Immunochemistry 10:841–843, 1973Google Scholar
  29. 29.
    Thomas P, Birbeck MSC, Cartwright P: A radioautographic study of the hepatic uptake of circulating carcinoembryonic antigen by the mouse. Biochem Soc Trans 5:312–313, 1977Google Scholar
  30. 30.
    Thomas P, Jones M: The effects of Triton WR 1339 and asialofetuin on the hepatic uptake of circulating native and asialo carcinoembryonic antigen. Biochem J 173:981–983, 1978Google Scholar
  31. 31.
    Wada T, Ohara H, Watanabe K, Kiroshita H, Yachi A: Autoradiographic study on the site of uptake of the haptoglobin/haemoglobin complex. J Reticuloendothel Soc 8:185–192, 1970Google Scholar
  32. 32.
    Schlesinger PH, Doebber TW, Mande BF, White R, DeSchryver C, Rodman JS, Miller MJ, Stahl P: Plasma clearance of glycoproteins with terminal mannose andN-acetyl glucosamine by liver non-parenchymal cells; Studies with β-d-glucosaminidase, ribonuclease and agalactoorosomucoid. Biochem J 176:103–109, 1978Google Scholar
  33. 33.
    Kawasaki T, Eyoh R, Yamashima I: Isolation and characterization of a mannan-binding protein from rabbit liver. Biochem Biophys Res Commun 81:1018–1024, 1978Google Scholar
  34. 34.
    Thomas P, Toth CA, Zamcheck N: Receptor mediated uptake of carcinoembryonic antigen (CEA) by xenogeneic Kupffer cells. Fed Proc 40:1820, 1981 (abstract)Google Scholar
  35. 35.
    Toth CA, Thomas P, Broitman SA, Zamcheck N: A new Kupffer cell receptor mediating plasma clearance of carcinoembryonic antigen by the rat. Biochem J 204:377–381, 1982Google Scholar
  36. 36.
    Thomas P, Summers JW: The biliary excretion of circulating asialo glycoproteins in the rat. Biochem Biophys Res Commun 80:335–339, 1978Google Scholar
  37. 37.
    Thomas P: Studies on the mechanism of biliary excretion of circulating glycoproteins. The carcinoembryonic antigen. Biochem J 192:837–843, 1980Google Scholar
  38. 38.
    Thomas P, Toth CA, Zamcheck N: Mechanism of biliary excretion of α1 glycoprotein in the rat. Gastroenterology 80:1302, 1981 (abstract)Google Scholar
  39. 39.
    Wagener C, Holler M, Wimmer L, Breuer H: Uptake of carcinoembryonic antigen by isolated perfused normal and cirrhotic rat liver. J Clin Chem Clin Biochem 17:196–197, 1979Google Scholar
  40. 40.
    Thomas P, Rogers AE, Fox JG, Zamcheck N: The clearance of circulating CEA and asialo CEA by the nutritionally deficient rhesus monkey. Clin Res 28:632A, 1980 (abstract)Google Scholar
  41. 41.
    Engvall E, Shively JE, Wrann M: Isolation and characterization of the normal cross-reacting antigen (NCA). Homology of itsN-terminal amino acid sequence with that of carcinoembryonic antigen. Proc Natl Acad Sci USA 75:1670–1674, 1978Google Scholar
  42. 42.
    Thomas P, Edwards RG, Westwood JH: Hepatic uptake of the non-specific cross-reacting antigen, a glycoprotein related to carcinoembryonic antigen. Biochem Soc Trans 7:699–701, 1979Google Scholar
  43. 43.
    Von Kleist S, Troupel S, King M, Burtin PA: A clinical comparison between non-specific cross-reacting antigen and CEA in patients sera. Br J Cancer 35:875–880, 1977Google Scholar
  44. 44.
    Loewenstein MS, Zamcheck N: Carcinoembryonic antigen and the liver. Gastroenterology 72:161–166, 1977Google Scholar
  45. 45.
    Gardner RC, Feinerman AE, Kantrowitz PA, Gootblatt S, Loewenstein MS, Zamcheck N: Serial carcinoembryonic antigen (CEA) blood levels in patients with ulcerative colitis. Am J Dig Dis 23:129–134, 1978Google Scholar
  46. 46.
    Loewenstein MS, Trey C, Kupchik HZ, Zamcheck N: Carcinoembryonic antigen (CEA) and alpha-fetoprotein (AFP) levels in fulminant liver failure: Effect of exchange transfusions. Clin Res 23:253A, 1975Google Scholar
  47. 47.
    Savrin RA, Martin EW: The relationship of the possible hepatic toxicity of chemotherapeutic drugs and carcinoembryonic antigen evaluation. Cancer 47:481–485, 1981Google Scholar
  48. 48.
    Cotmore SF, Carter RL: Mechanisms of enchanced intrahepatic metastasis in surfactant-treated hamsters; an electron microscopy study. Int J Cancer 11:725–738, 1973Google Scholar
  49. 49.
    Godfrey PP, Warner MJ, Coleman R: Enzymes and proteins in bile. Biochem J 196:11–16, 1981Google Scholar
  50. 50.
    Coleman R, Holdsworth G, Vyvoda OS: Glycocholate can remove lipid and protein components from the outer leaflet of the plasma membrane without causing cell lysis. Biochem Soc Trans 4:244, 1976Google Scholar
  51. 51.
    Evans WH, Kremmer T, Culvenor JG: Role of membranes in bile formation: Comparison of the composition of bile and a liver bile-cannilicular plasma-membrane subfraction. Biochem J 154:589–595, 1976Google Scholar
  52. 52.
    Coleman R, Ignal S, Godfrey PP, Billington D: Membranes and bile formation. Composition of several mammalian biles and their membrane-damaging properties. Biochem J 178:204–208, 1979Google Scholar
  53. 53.
    Drivas G, James O, Wardle N: Study of reticuloendothelial phagocytic capacity in patients with cholestasis. Br Med J 1:1568–1569, 1976Google Scholar
  54. 54.
    Kodama T, Fujimo M, Endo Y, Fukazawa M, Sugivra M, Oda T, Wada T, Burtin P: Carcinoembryonic antigen (CEA) and CEA like substances in hepato-biliary diseases.In Carcinoembryonic Proteins, Vol II. RC Lehmann (ed). Amsterdam, Elsevier, 1979, pp 93–98Google Scholar
  55. 55.
    Svenberg T, Hammarstrom S, Hedin A: Purification and properties of biliary glycoprotein 1 (BGP I). Immunochemical relationship to carcinoembryonic antigen. Mol Immunol 16:245–252, 1979Google Scholar
  56. 56.
    Svenberg T, Wahren B, Hammarstrom S: Elevated serum levels of a biliary glycoprotein (BGP I) in patients with liver or biliary tract disease. Clin Exp Immunol 36:317–325, 1979Google Scholar
  57. 57.
    Menard DB, Gisselbrecht C, Marty M, Reyes F, Chumeaux D: Antineoplastic agents and the liver. Gastroenterology 78:142–164, 1980Google Scholar
  58. 58.
    Popper H: Cholestasis. Annu Rev Med 19:39–56, 1968Google Scholar
  59. 59.
    Sherlock S: Diseases of the Liver and Biliary System, ed 5. Oxford, Blackwell Scientific Publications, 1975, pp 260–304Google Scholar
  60. 60.
    Hultberg B, Isaksson A, Jansson L: β-Hexosaminidase in Serum from patients with cirrhosis and cholestasis. Enzyme 26:296–300, 1981Google Scholar
  61. 61.
    Hultberg B, Isaksson A, Tiderstrom G: β-Hexosaminidase, leucine aminopeptidase, cystidyl aminopeptidase, hepatic enzymes and bilirubin in serum of chronic alcoholics with acute ethanol intoxication. Clin Chem Acta 105:317–323, 1980Google Scholar
  62. 62.
    Steer CJ, Kusiak JW, Brady RO, Jones EA: Selective hepatic uptake of human β-hexosaminidase A by a specific glycoprotein recognition system on sinusoidal cells. Proc Natl Acad Sci USA 76:2774–2778, 1979Google Scholar
  63. 63.
    Stockert RJ, Gartner U, Morell AG, Wolkoff AW: Effects of Receptor-specific antibody on the uptake of desialylated glycoproteins in the isolated perfused rat liver. J Biol Chem 255:3830–3831, 1980Google Scholar

Copyright information

© Digestive Disease Systems, Inc 1983

Authors and Affiliations

  • Peter Thomas
    • 1
    • 2
  • Norman Zamcheck
    • 1
    • 2
  1. 1.Mallory Gastrointestinal Research Laboratory, Department of MedicineHarvard Medical SchoolBoston
  2. 2.Department of Pathology, Boston University School of MedicineBoston City HospitalBoston

Personalised recommendations