Advertisement

Journal of Neural Transmission

, Volume 104, Issue 11–12, pp 1207–1214 | Cite as

The glutamate antagonist Riluzole suppresses intracortical facilitation

  • J. Liepert
  • P. Schwenkreis
  • M. Tegenthoff
  • J. -P. Malin
Basic Neurosciences and Genetics

Summary

The effect of the glutamate antagonist riluzole on excitatory and inhibitory phenomena in the human motor system was studied by transcranial magnetic stimulation (TMS) and peripheral electrical nerve stimulation. The motor threshold, the intracortical inhibition and intracortical facilitation as assessed by paired TMS, the cortical and peripheral silent periods, F wave amplitudes and F wave latencies were measured.

Riluzole suppressed the intracortical facilitation whereas other parameters remained unchanged, indicating that the neurotransmitter glutamate is mainly involved in facilitatory mechanisms in the motor system.

Keywords

Transcranial magnetic stimulation riluzole glutamate intracortical inhibition intracortical facilitation silent period 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bryson HM, Futon B, Benfield P (1996) Riluzole-a review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in amyotrophic lateral sclerosis. Drugs 5: 549–563Google Scholar
  2. Doble A (1996) The pharmacology and mechanism of action of riluzole. Neurology 47 [Suppl 4]: S233-S241Google Scholar
  3. Fisher MA (1992) H reflexes and F waves: physiology and clinical indications. Muscle Nerve 15: 1223–1233Google Scholar
  4. Hanajima R, Ugawa Y, Terao Y, Ogata K, Kanazawa I (1996) Ipsilateral cortico-cortical inhibition of the motor cortex in various neurological disorders. J Neurol Sci 140: 109–116Google Scholar
  5. Kujirai T, Caramia MD, Rothwell JC, Day BL, Thompson PD, Ferbert A, Wroe S, Asselman P, Marsden CD (1993) Corticocortical inhibition in human motor cortex. J Physiol 471: 501–519Google Scholar
  6. Lacomblez L, Bensimon G, Leigh PN, Guillet P, Meininger V (1996) Dose-ranging study of riluzole in amyotrophic lateral sclerosis. Lancet 347: 1425–1431Google Scholar
  7. Maclver MB, Amagasu SM, Mikulec AA, Monroe FA (1996) Riluzole anesthesia: use-dependent block of preseynaptic glutamate fibers. Anesthesiology 85: 626–634Google Scholar
  8. Mantz J, Laudenbach V, Lecharny JB, Henzel D, Desmonts JM (1994) Riluzole, a novel antiglutamate, blocks GABA uptake by striatal synaptosomes. Eur J Pharmacol 257: R7-R8Google Scholar
  9. McLellan DL (1973) The electromyographic silent period produced by supramaximal electrical stimulation in normal man. J Neurol Neurosurg Psychiatry 36: 334–341Google Scholar
  10. Mizoule J, Meldrum B, Mazadier M, Croucher M, Ollat C, Uzan A, Legrand JJ, Gueremy C, Le Fur G (1985) 2-Amino-6-trifluoromethoxy benzothiazole, a possible antagonist of excitatory amino acid neurotransmission. I. Anticonvulsant properties. Neuropharmacology 24: 767–773Google Scholar
  11. Ridding MC, Inzelberg R, Rothwell JC (1995a) Changes in excitability of motor cortical circuitry in patients with Parkinson's disease. Ann Neurol 37: 181–188Google Scholar
  12. Ridding MC, Sheean G, Rothwell MC, Inzelberg R, Kujirai T (1995b) Changes in the balance between motor cortical excitation and inhibition in focal task-specific dystonia. J Neurol Neurosurg Psychiatry 590: 493–498Google Scholar
  13. Roick H, von Giesen HJ, Benecke R (1993) On the origin of the postexcitatory inhibition seen after transcranial magnetic brain stimulation in awake human subjects. Exp Brain Res 94: 489–498Google Scholar
  14. Schulze-Bonhage A, Knott H, Ferbert A (1996) Effects of carbamazepine on cortical excitatory and inhibitory phenomena: a study with paired transcranial magnetic stimulation. Electroencephalogr Clin Neurophysiol 99: 267–273Google Scholar
  15. Taylor CP (1994) Emerging perspectives on the mechanism of action of gabapentin. Neurology 44 [Suppl 5]: S10-S16Google Scholar
  16. Triggs WJ, Cros D, Macdonell RAL, Chiappa KH, Fang J, Day BJ (1993) Cortical and spinal motor excitability during the transcranial magnetic stimulation silent period in humans. Brain Res 628: 39–48Google Scholar
  17. Ugawa Y, Hanajima R, Kanazawa I (1994) Motor cortex inhibition in patients with ataxia. Electroencephalogr Clin Neurophysiol 93: 225–229Google Scholar
  18. Ziemann U, Lönnecker S, Steinhoff BJ, Paulus W (1996a) Effects of antiepileptic drugs on motor cortex excitability in humans: a transcranial magnetic stimulation study. Ann Neurol 40: 367–378Google Scholar
  19. Ziemann U, Lönnecker S, Steinhoff BJ, Paulus W (1996b) The effect of lorazepam on the motor cortical excitability in man. Exp Brain Res 109: 127–135Google Scholar
  20. Ziemann U, Rothwell JC, Ridding MC (1996c) Interaction between intracortical inhibition and facilitation in human motor cortex. J Physiol 496: 873–881Google Scholar
  21. Ziemann U, Winter M, Reimers K, Reimers CD, Paulus W (1996d) Hyperexcitability of motor cortex in amyotrophic lateral sclerosis: evidence from paired magnetic stimulation. Electroencephalogr Clin Neurophysiol 99: 346Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • J. Liepert
    • 1
  • P. Schwenkreis
    • 1
  • M. Tegenthoff
    • 1
  • J. -P. Malin
    • 1
  1. 1.Department of NeurologyRuhr University BochumBochumFederal Republic of Germany

Personalised recommendations