Monatshefte für Mathematik

, Volume 104, Issue 4, pp 273–337 | Cite as

Point sets and sequences with small discrepancy

  • Harald Niederreiter
Article

Abstract

A systematic theory of a class of point sets called (t, m, s)-nets and of a class of sequences called (t, s)-sequences is developed. On the basis of this theory, point sets and sequences in thes-dimensional unit cube with the smallest discrepancy that is currently known are constructed. Various connections with other areas arise in this work, e.g. with orthogonal latin squares, finite projective planes, finite fields, and algebraic coding theory. Applications of the theory of (t, m, s)-nets to two methods for pseudorandom number generation, namely the digital multistep method and the GFSR method, are presented. Several open problems, mostly of a combinatorial nature, are stated.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Chen, W. W. L.: On irregularities of distribution II. Quart. J. Math. (2)34, 257–279 (1983).CrossRefMATHGoogle Scholar
  2. [2]
    Dénes, J., Keedwell, A. D.: Latin Squares and Their Applications. New York: Academic Press. 1974.MATHGoogle Scholar
  3. [3]
    Faure, H.: Discrépances de suites associées à un système de numération (en dimension un). Bull. Soc. Math. France109, 143–182 (1981).MATHMathSciNetGoogle Scholar
  4. [4]
    Faure, H.: Discrépance de suites associées à un système de numération (en dimensions). Acta Arith.41, 337–351 (1982).MATHMathSciNetGoogle Scholar
  5. [5]
    Hall, M.: Combinatorial Theory. Waltham: Blaisdell. 1967.MATHGoogle Scholar
  6. [6]
    Halton, J. H.: On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Numer. Math.2, 84–90 (1960); Berichtigung, ibid., 196.CrossRefMATHMathSciNetGoogle Scholar
  7. [7]
    Hammersley, J. M.: Monte Carlo methods for solving multivariable problems. Ann. New York Acad. Sci.86, 844–874 (1960).CrossRefMATHMathSciNetGoogle Scholar
  8. [8]
    Hlawka, E.: Zur angenäherten Berechnung mehrfacher Integrale. Mh. Math.66, 140–151 (1962).CrossRefMATHMathSciNetGoogle Scholar
  9. [9]
    Hlawka, E.: Uniform distribution modulo 1 and numerical analysis. Compositio Math.16, 92–105 (1964).MATHMathSciNetGoogle Scholar
  10. [10]
    Hua, L. K., Wang, Y.: Applications of Number Theory to Numerical Analysis. Berlin-Heidelberg-New York: Springer. 1981.MATHGoogle Scholar
  11. [11]
    Knuth, D. E.: The Art of Computer Programming, Vol. 2: Seminumerical Algorithms. 2nd ed. Reading: Addison-Wesley. 1981.MATHGoogle Scholar
  12. [12]
    Kuipers, L., Niederreiter, H.: Uniform Distribution of Sequences. New York: Wiley-Interscience. 1974.MATHGoogle Scholar
  13. [13]
    Lidl, R., Niederreiter, H.: Finite Fields. Reading: Addison-Wesley. 1983.MATHGoogle Scholar
  14. [14]
    Lidl, R., Niederreiter, H.: Introduction to Finite Fields and Their Applications. Cambridge: Cambridge Univ. Press. 1986.MATHGoogle Scholar
  15. [15]
    Macwilliams, F. J., Sloane, N. J. A.: The Theory of Error-Correcting Codes. Amsterdam: North-Holland. 1977.MATHGoogle Scholar
  16. [16]
    Mcdonald, B. R.: Finite Rings with Identity. New York: Dekker. 1974.MATHGoogle Scholar
  17. [17]
    Muir, T.: History of Determinants, Vol. IV. London: Macmillan. 1923.Google Scholar
  18. [18]
    Niederreiter, H.: Pseudo-random numbers and optimal coefficients. Adv. in Math.26, 99–181 (1977).CrossRefMATHMathSciNetGoogle Scholar
  19. [19]
    Niederreiter, H.: Quasi-Monte Carlo methods and pseudo-random numbers. Bull. Amer. Math. Soc.84, 957–1041 (1978).CrossRefMATHMathSciNetGoogle Scholar
  20. [20]
    Niederreiter, H.: Existence of good lattice points in the sense of Hlawka. Mh. Math.86, 203–219 (1978).CrossRefMATHMathSciNetGoogle Scholar
  21. [21]
    Niederreiter, H.: The serial test for pseudo-random numbers generated by the linear congruential method. Numer. Math.46, 51–68 (1985).CrossRefMATHMathSciNetGoogle Scholar
  22. [22]
    Niederreiter, H.: Multidimensional numerical integration using pseudorandom numbers. Math. Programming Study27, 17–38 (1986).CrossRefMATHMathSciNetGoogle Scholar
  23. [23]
    Niederreiter, H.: Low-discrepancy point sets. Mh. Math.102, 155–167 (1986).CrossRefMATHMathSciNetGoogle Scholar
  24. [24]
    Niederreiter, H.: Pseudozufallszahlen und die Theorie der Gleichverteilung. Sitzungsber. Österr. Akad. Wiss. Math.-Naturwiss. Kl.195, 109–138 (1986).MATHMathSciNetGoogle Scholar
  25. [25]
    Niederreiter, H.: A statistical analysis of generalized feedback shift register pseudorandom number generators. SIAM J. Sci. Statist. Comp. (To appear.)Google Scholar
  26. [26]
    Niederreiter, H.: The serial test for digitalk-step pseudorandom numbers. Math. J. Okayama Univ. (To appear.)Google Scholar
  27. [27]
    Roth, K. F.: On irregularities of distribution. Mathematika1, 73–79 (1954).CrossRefMATHMathSciNetGoogle Scholar
  28. [28]
    Schmidt, W. M.: Irregularities of distribution. VII. Acta Arith.21, 45–50 (1972).MATHMathSciNetGoogle Scholar
  29. [29]
    Sobol', I. M.: The distribution of points in a cube and the approximate evaluation of integrals. Zh. Vychisl. Mat. i Mat. Fiz.7, 784–802 (1967). (Russian.)MathSciNetGoogle Scholar
  30. [30]
    Sobol', I. M.: Multidimensional Quadrature Formulas and Haar Functions. Moscow: Nauka. 1969. (Russian.)Google Scholar
  31. [31]
    Tezuka, S.: On optimal GFSR pseudorandom number generators. Submitted to Math. Comp.Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Harald Niederreiter
    • 1
  1. 1.Kommission für MathematikÖsterreichische Akademie der WissenschaftenWienAustria

Personalised recommendations