Advertisement

Zeitschrift für Physik A Atomic Nuclei

, Volume 324, Issue 3, pp 261–269 | Cite as

Exact calculation of level densities for many non-interacting fermions in large model spaces

  • C. Jacquemin
  • S. K. Kataria
Nuclei

Abstract

A simple recursive method to calculate exactly level densities with fixed spinJ and parity is presented for an independent particle model of nuclei. This method can be used to calculate fixed particle-hole level densities as well. The results of these exact calculations are compared to those of commonly used approximation methods, like the saddle-point approximation and Gram-Charlier expansion. The former appears to be quite accurate, while the accuracy of Gram-Charlier expansion is strongly dependent on decomposition of then-fermion space into smaller subspaces. Comparison of exactly calculated with experimental densities at the neutron evaporation threshold shows unambiguously that some residual interaction must be introduced to describe nuclei at these excitation energies.

PACS

21.10.Ma 21.10.Hw 21.60.Cs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bethe, H.A.: Rev. Mod. Phys.2, 53 (1937)Google Scholar
  2. 2.
    Bloch, C.: Phys. Rev.93, 1094 (1954)Google Scholar
  3. 3.
    Gilbert, A., Cameron, A.G.W.: Can. J. Phys.43, 1446 (1965)Google Scholar
  4. 3.a
    Kataria, S.K., Ramamurthy, V.S., Kapoor, S.S.: Phys. Rev. C18, 549 (1978)Google Scholar
  5. 3.b
    Ignatuk, A.V., Smirenkin, G.N., Tishin, A.S.: Sov. J. Nucl. Phys.21, 255 (1975)Google Scholar
  6. 4.
    Hilman, M., Grover, J.R.: Phys. Rev.185, 1303 (1969)Google Scholar
  7. 4.a
    Berger, J.F., Martinot, M.: Nucl. Phys. A226, 391 (1974)Google Scholar
  8. 5.
    Chang, F.S., French, J.B., Thio, T.H.: Ann. Phys.66, 137 (1971)Google Scholar
  9. 5.a
    Das Gupta, S., Bhaduri, R.K.: Phys. Lett.58B, 381 (1975)Google Scholar
  10. 6.
    Bloch, C.: Summer School of Theoretical Physics, Les Houches 1968. de Witt269-1, Gillet, V. (eds.), p. 303. New York: Gordon Breach 1969Google Scholar
  11. 6.a
    Hoare, M.R.J.: Chem. Phys.52, 5695 (1970)Google Scholar
  12. 7.
    Williams, F.C., Jr.: Nucl. Phys. A133, 33 (1969)Google Scholar
  13. 7.a
    Albretcht, K., Blann, M.: Phys. Rev. C8, 1481 (1973)Google Scholar
  14. 8.a
    Jacquemin, C.: Phys. Lett.43B, 253 (1973)Google Scholar
  15. 8.
    Jacquemin, C., Spitz, S.: Z. Phys. A — Atoms and Nuclei290, 290 (1979)Google Scholar
  16. 9.
    Ginocchio, J.N.: Phys. Rev. C8, 135 (1973)Google Scholar
  17. 9.a
    Ayik, S., Ginocchio, J.N.: Nucl. Phys. A221, 285 (1974)Google Scholar
  18. 9.b
    Verbaarschot, J.J.M., Brussaard, P.J.: Phys. Lett.102B, 201 (1981)Google Scholar
  19. 10.
    Bohr, A., Mottelsson, B.R.: Nuclear structure. Vol. I. New York: Benjamin 1969Google Scholar
  20. 11.
    Haq, R.U., Wong, S.S.M.: Phys. Lett.93B, 357 (1980)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • C. Jacquemin
    • 1
  • S. K. Kataria
    • 1
  1. 1.Division de Physique ThéoriqueInstitut de Physique NucléaireOrsayFrance

Personalised recommendations