Advertisement

Combinatorica

, Volume 15, Issue 1, pp 43–65 | Cite as

On the second eigenvalue of hypergraphs

  • Joel Friedman
  • Avi Wigderson
Article

Mathematics Subject Classification (1991)

05 C 50 05 C 65 68 R 10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Ajtai, J. Komlós, andE. Szemerédi: Deterministic simulation in LOGSPACE,STOC, (1987), 132–139.Google Scholar
  2. [2]
    N. Alon: Eigenvalues and expanders,Combinatorica,6 (2) (1986), 83–96.zbMATHMathSciNetGoogle Scholar
  3. [3]
    N. Alon: Eigenvalues, geometric expanders, sorting in rounds and ramsey theory,Combinatorica,6 (6) (1986), 207–219.zbMATHMathSciNetGoogle Scholar
  4. [4]
    M. Blum: Independent unbiased coin flips from a correlated sources: a finite state markov chain,FOCS, (1984), 425–433.Google Scholar
  5. [5]
    Andrei Broder, andEli Shamir: On the second eigenvalue of random regular graphs, In28th Annual Symposium on Foundations of Computer Science, (1987) 286–294.Google Scholar
  6. [6]
    F. Bruhat, andJ. Tits:Publ. Math. IHES, 1971.Google Scholar
  7. [7]
    B. Chor, andO. Goldriech: Unbiased bits from sources of weak randomness and probabilistic communication complexity,FOCS, (1985), 429–442.Google Scholar
  8. [8]
    F. R. K. Chung: Diameters and eigenvalues,J. AMS. 2 (1989), 187–196.zbMATHGoogle Scholar
  9. [9]
    A. Cohen, andA. Wigderson: Dispersers, deterministic amplification, and weak random sources,FOCS, (1989), 14–19.Google Scholar
  10. [10]
    J. Friedman, J. Kahn, andE. Szemerédi: On the second eigenvalue of random graphs,STOC, (1989), 587–598.Google Scholar
  11. [11]
    J. Friedman: On the second eigenvalue and random walks of randomd-regular graphs, Technical report, Princeton University, August 1988;Combinatorica,11 (4) (1991) 331–362.zbMATHMathSciNetCrossRefGoogle Scholar
  12. [12]
    J. Friedman: Some graphs with small second eigenvalue. Technical report, Princeton University, October 1989;Combinatorica,15 (1) (1995), 31–42.zbMATHMathSciNetGoogle Scholar
  13. [13]
    M. Hall:Combinatorial Theory, John Wiley & Sons, 2nd edition, 1986.Google Scholar
  14. [14]
    R. Impagliazzo, andD. Zuckerman: How to recycle random bits,FOCS, (1989), 248–253.Google Scholar
  15. [15]
    N. Katz: An estimate for character sums,J. AMS,2 (1989), 197–200.zbMATHGoogle Scholar
  16. [16]
    A. Lubotzky, R. Phillips, andP. Sarnak: Explicit expanders and the ramanujan conjectures, In18th Annual ACM Symposium on Theory of Computing, (1986), 240–246.Google Scholar
  17. [17]
    G. Margulis: Explicit group theoretic constructions of combinatorial schemes and their applications for construction of expanders and concentrators,J. of Problems of Information Transmission,24 (1988), 39–46.zbMATHMathSciNetGoogle Scholar
  18. [18]
    N. Nisan, andA. Wigderson: Hardness vs. randomness,FOCS, (1988), 2–11.Google Scholar
  19. [19]
    Alain Robert:Introduction to the Representation Theory of Compact and Locally Compact Groups, Cambridge University Press, Cambridge, 1983.Google Scholar
  20. [20]
    M. Santha: On using deterministic functions to reduce randomness in probabilistic algorithms, 1986: manuscript.Google Scholar
  21. [21]
    M. Sipser: Expanders randomness or time versus space,Structure and Complexity Theory, 1986.Google Scholar
  22. [22]
    M. Santha, andU. V. Vazirani: Generating quasi-random sequences from slightly random sources,FOCS, (1984), 434–440.Google Scholar
  23. [23]
    U. V. Varirani, andV. V. Vazirani: Random polynomial time is equal to slightly random polynomial time,FOCS, (1985), 417–428.Google Scholar
  24. [24]
    E. Wigner: Characteristic vectors of bordered matrices with infinite dimensions,Annals of Math.,63 (3) (1955), 548–564.MathSciNetCrossRefGoogle Scholar
  25. [25]
    D. Zuckerman: Simulating BPP using a general weak random source,FOCS, (1991), 79–89.Google Scholar

Copyright information

© Akadémiai Kiadó 1995

Authors and Affiliations

  • Joel Friedman
    • 1
  • Avi Wigderson
    • 2
  1. 1.Department of MathematicsUniversity of British ColumbiaVancouverCanada
  2. 2.Dept. of Comp. Sci.Hebrew UniversityJerusalemISRAEL

Personalised recommendations