Advertisement

Zeitschrift für Physik B Condensed Matter

, Volume 43, Issue 2, pp 185–187 | Cite as

Chapman-Kolmogorov equation and path integrals for discrete chaos in presence of noise

  • H. Haken
  • G. Mayer-Kress
Article

Abstract

We derive an equation of the Chapman-Kolmogorov type for discrete multi-dimensional mappings under the action of additive and multiplicative noise with arbitrary distribution function. The resulting equation is reduced to a Fredholm integral equation. By iteration of the Chapman-Kolmogorov equation as usual, a path integral solution is found. Specializing the distribution function of the noise to a Gaussian distribution and taking the Fourier transform contant can be made with the path integral formulation used by Shraiman, Wayne and Martin.

Keywords

Neural Network Fourier Fourier Transform Distribution Function Gaussian Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Collet, P., Eckmann, J.P.: Iterated maps on the interval as dynamical system, Birkhauser, Boston Inc. (1980) with many further referencesGoogle Scholar
  2. 2.
    Grossmann, S., Thomae, S.: Z. Naturforsch.32a, 1353–1363 (1977)Google Scholar
  3. 3.
    Feigenbaum, M.J.: J. Stat. Phys.19, 25 (1978); Phys. Lett.74A, 375 (1979)Google Scholar
  4. 4a.
    Zippelius, A., Lücke, M.: J. Stat. Phys.24, 345 (1981)Google Scholar
  5. 4b.
    Mayer-Kress, G., Haken, H.: Preprint August 1980Google Scholar
  6. 5.
    Crutchfield, J.P., Huberman, B.A.: Phys. Lett.77 A, 407 (1980)Google Scholar
  7. 6.
    Crutchfield, J.P., Nauenberg, M., Rudnick, J.: Phys. Rev. Lett.46, 933 (1981)Google Scholar
  8. 7.
    Shiaiman, B., Wayne, C.E., Martin, P.C.: Phys. Rev. Lett.46, 935 (1981)Google Scholar
  9. 8.
    Eckmann, J.P., Thomas, L., Wittwer, P.: Preprint, Genève, April 1981Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • H. Haken
    • 1
  • G. Mayer-Kress
    • 1
  1. 1.Institut für Theoretische Physik der UniversitätStuttgartGermany

Personalised recommendations