Advertisement

Zeitschrift für Physik B Condensed Matter

, Volume 39, Issue 3, pp 269–279 | Cite as

Continued fraction solutions of discrete master equations not obeying detailed balance II

  • G. Haag
  • P. Hänggi
Article

Abstract

In this paper we continue to extend our previous investigation of continued fraction (CF) solutions for the stationary probability of discrete one-variable master equations which generally do not satisfy detailed balance. We derive explicit expressions, directly in terms of the elementary transition rates, for the continued fraction recursion coefficients. Further, we derive several approximate CF-solutions, i.e., we deduce non-systematic and systematic truncation error estimates. The method is applied to two master equations with two-particle jumps for which we derive the exact probability solution and make a comparison with approximate solutions. The investigation is also extended to the case of master equations with multiple birth and death transitions of maximal orderR.

Keywords

Approximate Solution Explicit Expression Transition Rate Stationary Probability Master Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Oppenheim, I., Shuler, K.E., Weiss, G.H.: Stochastic Processes in Chemical Physics: The Master Equation. Cambridge, Massachusetts: MIT Press, 1977Google Scholar
  2. 2.
    Goel, N.W., Richter-Dyn, N.: Stochastic Processes in Biology. New York: Academic Press 1974Google Scholar
  3. 3.
    Agarwal, G.S.: Springer Tracts in Modern Physics. Vol. 70. Berlin, Heidelberg, New York: Springer 1974Google Scholar
  4. 4.
    Haag, G., Hänggi, P.: Z. Physik B34, 411 (1979)Google Scholar
  5. 5.
    Haag, G.: Z. Physik B29, 153 (1978)Google Scholar
  6. 6.
    Meschkowski, H.: Differenzengleichungen. Studia Mathematica. Vol. XIV, Chap. X. Göttingen: Vandenhoeck & Ruprecht 1959Google Scholar
  7. 7.
    Lidstone, G.I.: Proc. Edinburgh Math. Soc.2, 16 (1929)Google Scholar
  8. 8.
    Widder, C.V.: Trans. Amer. Month. Soc.51, 387 (1941)Google Scholar
  9. 9.
    Doubleday, W.G.: Math. Biosci.17, 43 (1973)Google Scholar
  10. 10.
    Bulsara, A.R., Schieve, W.C.: Phys. Rev. A19, 2046 (1979)Google Scholar
  11. 11.
    Görtz, R., Walls, D.F.: Z. Physik B25, 423 (1976)Google Scholar
  12. 12.
    Van Kampen, N.G.: Can. J. Phys.39, 551 (1961)Google Scholar
  13. 13.
    Kubo, R., Matsuo, K., Kitahara, K.: J. Stat. Phys.9, 51 (1973)Google Scholar
  14. 14.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. US Department of Commerce, Natl. Bur. Staud. Appl. Math.55, 804 (1964)Google Scholar
  15. 15.
    Seshadri, V.N., Master Equation Theory of Simultaneous Vibrational Relaxation and Intramolecular Decay. Ph.D. Thesis, Rochester University, unpublishedGoogle Scholar
  16. 16.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. US Department of Commerce. Natl. Bur. Stand. Appl. Math.55, 504, relation 13.1.2.; relation 13.4.7Google Scholar
  17. 17.
    Nicolis, G.: J. Stat. Phys.6, 195 (1972)Google Scholar
  18. 18.
    Abramowitz. M., Stegun, I.A.: Handbook of Mathematical Functions. US Department of Commerce. Natl. Bur. Stand. Appl. Math.55, 361, relation 9.1.41Google Scholar
  19. 19.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. US Department of Commerce. Natl. Bur. Stand. Appl. Math.55, 377, relation 9.6.51Google Scholar
  20. 20.
    Mazo, R.M.: J. Chem. Phys.62, 4244 (1975)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • G. Haag
    • 1
  • P. Hänggi
    • 2
  1. 1.Institut für Theoretische PhysikUniversität StuttgartStuttgart 80Germany
  2. 2.Department of ChemistryUniversity of CaliforniaLa JollaUSA

Personalised recommendations