Journal of Neural Transmission

, Volume 103, Issue 1–2, pp 191–216

Comparative pharmacodynamic studies with the novel serotonin uptake-enhancing tianeptine and — inhibiting fluvoxamine utilizing EEG mapping and psychometry

  • B. Saletu
  • J. Grünberger
  • P. Anderer
  • L. Linzmayer
  • G. Zyhlarz
Biological Psychiatry


In a double-blind, placebo-controlled study, the encephalotropic and psychotropic effects of tianeptine (TIA) — a new tricyclic antidepressant, enhancing serotonin reuptake — were investigated as compared with the serotonin reuptake inhibiting antidepressant, fluvoxamine (FLU), utilizing EEG mapping, psychometric and psychophysiological measures. 16 healthy volunteers (8 males, 8 females) aged 21–35 (man 27) years received randomized and at weekly intervals single oral doses of placebo, 12.5 and 25 mg TIA and 50mg FLU. EEG recordings, psychometric and psychophysiological tests and evaluation of pulse, blood pressure and side effects were carried out at 0,2,4,6 and 8 hours; blood sampling, in addition, at hour 1.

TIA plasma levels rose fast to peaks at 1–2 hours and declined rapidly as well, while the MC5 metabolite peaked in the 4th hour and declined more slowly. EEG mapping demonstrated that both TIA and FLU induced significant changes in brain function between the 1st and 8th hour, which, however, differed in their time course. 12.5 mg TIA exhibited, as compared with placebo, slight activating properties in the EEG (decrease of delta and theta, increase of alpha and beta, acceleration of the centroid), parallelled by thymopsychic improvement (mood elevation). 25 mg TIA showed EEG activation up to the 4th hour, later EEG sedation, accompanied by an initial thymopsychic improvement and differential changes thereafter (improved mood, decreased vigility), with the noopsyche improving at all times (attention, Pauli test). 50mg FLU induced initially sedation and thereafter activation, accompanied by thymopsychic deterioration and subsequent improvement, the latter also being observed in the noopsyche (attention, memory). In pupillary and skin conductance measures, generally a slight activation occurred after placebo, which was attenuated by 25 mg TIA. Correlation maps between plasma levels and EEG changes demonstrated: the higher the TIA plasma levels, the more absolute and relative beta power, the less alpha power and the faster the centroid of the total power spectrum, reflecting CNS-activation. Topographically, the correlations were mostly seen over both fronto-temporal regions. In the latter, dominant frequency signalled desactivation in the right and activation in the left hemiphere after both antidepressants, which thereby induced changes in brain function opposite to those observed in depression. Both drugs were well tolerated.


Human pharmacology antidepressant tianeptine fluvoxamine serotonin pharmacokinetics pharmacodynamics EEG mapping psychometry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderer P, Saletu B, Kinsperger K, Semlitsch H (1987) Topographic brain mapping of EEG in neuropsychopharmacology, part I. Methodological aspects. Meth Find Exp Clin Pharmacol 9(6): 371–384Google Scholar
  2. Anderer P, Semlitsch HV, Saletu B, Barbanoj MJ (1992) Artifact processing in topographic mapping of electroencephalographic activity in neuropsychopharmacology. Psychiatry Res 45: 79–93Google Scholar
  3. Angst J, Bech P, Boyer P, Bruinvels J, Engel R, Helmchen H, Hippius H, Lingjaerde O, Racagni G, Saletu B, Sedvall G, Silverstone JT, Stefanis CN, Stoll K, Woggon B (1989) Consensus conference on the methodology of clinical trials of antidepressants, Zurich, March 1988: report of the consensus committee. Pharmacopsychiat 22: 3–7Google Scholar
  4. Antonijoan RM, Barbanoj MJ, Anderer P, Torrent J, Jane F, Saletu B (1994) Antidepressants and anxiolytics: their interaction on vigilance. J Psychophysiol 8: 248Google Scholar
  5. Bartels PH, Subach JA (1976) Automated interpretation of complex scenes. In: Preston E, Onoe M (eds) Digital processing of biomedical imagery. Academic Press, New York, pp 101–114Google Scholar
  6. Blier P, Mongeau R, Weiss M, de Montigny C (1993) Modulation of serotonin neurotransmission by presynaptic alpha-2-adrenergic receptors: a target for antidepressant pharmacotherapy? In: Mendlewicz J, Brunello N, Langer SZ, Racagni G (eds) New pharmacological approaches to the therapy of depressive disorders. International Academy for Biomedical Drug Research, vol 5. Karger, Basel, pp 74–82Google Scholar
  7. Bruder GE, Yozawita A (1979) Central auditory processing and laterality in psychiatric patients. In: Gruzelier J, Flor-Henry P (eds) Hemisphere asymmetries of function and psychopathology. Elsevier, AmsterdamGoogle Scholar
  8. Brumback RA, Staton RD, Wilson H (1980) Neuropsychological study of children during and after remission of endogenous depressive episodes. Percept Mot Skills 50: 1163–1167Google Scholar
  9. Brunello N, Riva M, Volterra A, Racagni G (1987) Effect of some tricylic and nontricyclic antidepressants on [3]imipramine binding and serotonin uptake in rat cerebral cortex after prolonged treatment. Fundam Clin Pharmacol 1: 327–333Google Scholar
  10. Casacchia M, Sconci V, Vespucci G, Brancato T (1989) Double blind clinical study of tianeptine, a new 5-HT uptake enhancer. International Symposium on Serotonin: From Cell Biology to Pharmacology and Therapeutics, Florence, p 92Google Scholar
  11. Chamba G, Lemoine P, Flachaire E, Ferry N, Quincy C, Sassard J, Ferber C, Mocaer E, Kamoun A, Renaud B (1991) Increased serotonin platelet uptake after tianeptine administration in depressed patients. Biol Psychiatry 30: 609–617Google Scholar
  12. Costa e Suva JA, Ruschel S (1994) Tianeptine versus placebo study in major depressions and depressive bipolar disorders. Eur Psychiatry 9 [Suppl 1]: 140Google Scholar
  13. Davidson RJ (1987) EEG measures of cerebral asymmetry: conceptual and methodological issues. Int J Neurosci 39: 69–71Google Scholar
  14. Defrance R, Marey C, Kamoun A (1988) Antidepressant and anxiolytic activities of tianeptine. An overview of clinical trials. Clin Neuropharmacol 11 [Suppl 2]: 74–82Google Scholar
  15. Delagrange P, Bouyer JJ, Durand C, Mocaer E, Rougeul A (1990) Action of tianeptine on focalization of attention in cat. Psychopharmacology 102: 227–233Google Scholar
  16. Delbende C, Contesse V, Mocäer E, Kamoun A, Vaudry H (1991) The novel antidepressant, tianeptine, reduces stress-evoked stimulation of the hypothalamo-pituitary-adrenal axis. Eur J Pharmacol 202: 391–396Google Scholar
  17. De Montigny C, Chaput Y, Blier P (1993) Classical and novel targets for antidepressant drugs. In: Mendlewicz J, Brunello N, Langer SZ, Racagni G (eds) New pharmacological approaches to the therapy of depressive disorders. International Academy for Biomédical Drug Research, vol 5. Karger, Basel, pp 8–17Google Scholar
  18. De Simoni MG, De Luigi A, Manfridi A, Sokola A (1989) Tianeptine enhancement of serotonin uptake: an in vivo voltametric study. International Symposium on Serotonin From Cell Biology to Pharmacology and Therapeutics, Florence, March 29–April 1, 1989, p 87 (Abstract)Google Scholar
  19. Duffy FH, Bartels PH, Burchfield JL (1981) Significance probability mapping: an aid in the topographic analysis of brain electrical activity. Electroencephalogr Clin Neurophysiol 51: 455–462Google Scholar
  20. El Mestikawy S, Gozlan H, Ménard F, Bourgoin S, Hamon M (1988) Interactions of the potential antidepressant tianeptine with central serotonin receptors in the rat brain. Fifth International Meeting on Clinical Pharmacology and Psychiatry, Tromso, p 31Google Scholar
  21. Fattacini CM, Bolanos-Jimenez F, Gozlan H, Hamon M (1990) Tianeptine stimulates uptake of 5-hydroxytryptamine in vivo in the rat brain. Neuropharmacology 29: 1–8Google Scholar
  22. File SE, Mabbutt PS (1991) Effects of tianeptine in animal models of anxiety and on learning and memory. Drug Dev Res 23: 47–56Google Scholar
  23. Flor-Henry P (1974) Psychosis, neurosis and epilepsy: developmental and gender-related effects and their aetiological contribution. Br J Psychiatry 124: 144–150Google Scholar
  24. Flor-Henry P (1976) Lateralized temporal-limibic dysfunction and psychopathology. Ann NY Acad Sci 280: 777–797Google Scholar
  25. Gasser T, Bächer P, Möcks J (1982) Transformation towards the normal distribution of broad band spectrum parameters of the EEG. Clin Neurophysiol 43: 119–124Google Scholar
  26. Grahame-Smith DG (1992) Serotonin in affective disorders. In: Montgomery SA (ed) Selective serotonin reuptake inhibitors in psychiatric practice. Rapid Communications of Oxford Ltd, Oxford, pp 5–13Google Scholar
  27. Grislain L, Gelé P, Bertrand M, Luijten W, Bromet N, Salvadori C, Kamoun A (1990) The metabolic pathways of tianeptine, a new antidepressant, in healthy volunteers. Drug Metab Dis 18(5): 804–808Google Scholar
  28. Grünberger J (1977) Psychodiagnostik des Alkoholkranken. Ein methodischer Beitrag zur Bestimmung der Organizität in der Psychiatrie. Maudrich, WienGoogle Scholar
  29. Grünberger J, Linzmayer L, Saletu B (1984) Klinische Psychodiagnostik mit Hilfe psychophysiologischer Verfahren. Wien Med Wochenschr 134: 29–35Google Scholar
  30. Guelfi JD (1992) Efficacy of tianeptine in comparative trials versus reference antidepressants: an overview. Br J Psychiatry 160 [Suppl 15]: 72–75Google Scholar
  31. Hamon M, Bourgoin S, Gozlan H (1989) Effet de la tianeptine sur la libération de la [3H]5 HT et sur les divers types de récepteurs sérotoninergiques dans le système nerveux chez le rat. J Psychiatr Biol Ther (March): 32–35Google Scholar
  32. Herrmann WM (1982) Development and critical evaluation of an objective procedure for the electroencephalographic classification of psychotropic drugs. In: Herrmann WM (ed) Electroencephalography in drug research. Fischer, Stuttgart New York, pp 249–351Google Scholar
  33. Herrmann WM, Schärer E (1986) Das Pharmako-EEG und seine Bedeutung für die klinische Pharmakologie. In: Kuemmerle HP, Hitzenberger G, Spitzy KH (eds) Klinische Pharmakologie, 4th edn. Landsberg, München, pp 1–71Google Scholar
  34. Invernizzi R, Pozzi L, Garattini S, Samanin R (1992) Tianeptine increases the extracellular concentrations of dopamine in the nucleus accumbens by a serotonin-independent mechanism. Neuropharmacology 31: 221–227Google Scholar
  35. Itil TM (1982) The significance of quantitative pharmaco-EEG in the discovery and classification of psychotropic drugs. In: Herrmann WM (ed) Electroencephalography in drug research. Fischer, Stuttgart New York, pp 131–157Google Scholar
  36. Itil TM, Shapiro DM, Eralp E, Akmann A, Itil KZ, Garbizu C (1985) A new brain function diagnostic unit, including the dynamic brain mapping of computer analyzed EEG, evoked potentials and sleep (a new hardware/software system and its application in psychiatry and psychopharmacology). New Trends Exp Clin Psychiatry 1: 107–177Google Scholar
  37. Jaffard R, Mocaer E, Poignant JC, Micheau J, Marighetto A, Meunier M, Beracochea D (1991) Effects of tianeptine on spontaneous alternation, simple and concurrent spatial discrimination learning and on a sequential alternation deficit induced by longterm ethanol administration in mice. Behav Pharmacol 2: 37–46Google Scholar
  38. Kato G, Weitsch AF (1988) Neurochemical profile of tianeptine a new antidepressant drug. Clin Neuropharmacol 11 [Suppl 2]: 43–50Google Scholar
  39. Kelly JP, Leonard BE (1990) The effect of tianeptine on the olfactory bulbectomized (OB) rat model of depression. Third Int Congress of Europ Behavioural Pharmacology Meeting, Noordwigkhout, The Netherlands, June 25–27, 1990Google Scholar
  40. Kronfol Z, Hamsher K, Digre K, Waziri R (1978) Depression and hemispheric functions: changes associated with unilateral ECT. Br J Psychiatry 132: 560–567Google Scholar
  41. Labrid C, Moleyre J, Poignant JC, Malen C, Mocaer E, Kamoun A (1988) Structureactivity relationship of tricyclic antidepressants, with special reference to tianeptine. Clin Neuropharmacol 11 [Suppl 2]: 21–31Google Scholar
  42. Lejeune F, Poignant JC, Reure H (1988) Etude électrophysiologique de la tianeptine, nouveau stimulant du recaptage de la sérotonine possédant une activité antidépressive. Neurophysiol Clin 18: 369–381Google Scholar
  43. Loo H, Deniker P (1988) Position of tianeptine among antidepressive chemotherapies. Clin Neuropharmacol 11 [Suppl 2]: 97–102Google Scholar
  44. Matousek M, Capone C, Okawa M (1981) Measurement of the interhemispheral differences as a diagnostic tool in psychiatry. Adv Biol Psychiat 6: 76–80Google Scholar
  45. Mennini T, Mocaer E, Garattini S (1987) Tianeptine, a selective enhancer of serotonin uptake in rat brain. Naunyn Schmiedebergs Arch Pharmacol 336: 478–482Google Scholar
  46. Mocaer E, Rettori MC, Kamoun A (1988a) Pharmacological antidepressive effects and tianeptine-induced 5-HT uptake increase. Clin Neuropharmacol 11 [Suppl 2]: 32–42Google Scholar
  47. Mocaer E, Lagarde D, Balzamo E, Milhaud C (1988b) Effects of tianeptine on sleepwakefulness cycles and EEG in monkey. Abstracts of the XVIth C.I.N.P. Congress, Munich August 15–19, 1988. Psychopharmacology 96 [Suppl]: 275Google Scholar
  48. Nicot G, Lachatre G, Gonnet C, Mallon J, Mocaer E (1986) Ion paired extraction and high performance liquid Chromatographic determination of tianeptine and its metabolites in human plasma, urine and tissues. J Chromatogr 381: 115–126Google Scholar
  49. Olie JP, Guelfi JD, Malka R, Dulcire C, Kamoun A, Loo H (1988) Traitements de longue durée par les antidépresseurs. La tianeptine: Méthodologie d'une étude au long cours et résultats préliminaires. L'Encéphale 14: 79–84Google Scholar
  50. Ortiz J, Mocaer E, Artigas F (1991) Effects of the antidepressant drug tianeptine on plasma and platelet serotonin in the rat. Eur J Pharmacol 199: 335–339Google Scholar
  51. Ortiz J, Mariscot C, Alvarez E, Artigas F (1993) Effects of the antidepressant drug tianeptine on plasma and platelet serotonin of depressive patients and healthy controls. J Affect Disord 29: 227–234Google Scholar
  52. Osgood CD, Suci GJ, Tannenbaum PH (1975) The measurement of meaning. University Press, UrbanaGoogle Scholar
  53. Perris C, Monakhov K (1979) Depressive symptomatology and systematic structural analysis of the EEG. In: Gruzelier J, Flor-Henry P (eds) Hemisphere asymmetries of function and psychopathology. Elsevier, AmsterdamGoogle Scholar
  54. Perris C, Monakhov K, Knorring Lvon, Botskarev V, Nikiforov A (1978) Systematic structural analysis of the electroencephalogram of depressed patients: general principles and preliminary results of an international collaborative study. Neuropsychobiology 4: 207–228Google Scholar
  55. Poignant JC (1981) Etude pharmacologique d'un nouvel antidépresseur: la tianeptine. In: Perris C, Struwe G, Jansson B (eds) Biological psychiatry. Elsevier, Amsterdam, pp 573–578Google Scholar
  56. Prichep LS, Lieber AL, John ER, Alper K, Gomez-Mont F, Essig-Peppard T, Flitter M (1986) Quantitative EEG in depressive disorders. In: Shagass Ch, Josiassen RC, Roemer RA (eds) Brain electrical potentials and psychopathology. Elsevier, New York Amsterdam London, pp 223–244Google Scholar
  57. Sacchetti G, Bonini I, Cools Waeterloos G, Samanin R (1993) Tianeptine raises dopamine and blocks stress-induced noradrenaline release in the rat frontal cortex. Eur J Pharmacol 236: 171–175Google Scholar
  58. Saletu B (1982) Pharmaco-EEG profiles of typical and atypical antidepressants. In: Costa E, Racagni G (eds) Typical and atypical antidepressants: clinical practice. Raven Press, New York, pp 257–268Google Scholar
  59. Saletu B (1987) The use of pharmaco-EEG in drug profiling. In: Hindmarch I, Stonier PD (eds) Human psychompharmacology. Measures and methods, vol 1. Wiley, Chichester, pp 173–200Google Scholar
  60. Saletu B (1993) Neurophysiological and psychometric evaluation of central effects of classic and novel antidepressants. EEG mapping in depression. In: Mendlewicz J, Brunello N, Langer SZ, Racagni G (eds) New pharmacological approaches to the therapy of depressive disorders. International Academy for Biomedical and Drug Research, vol 5. Karger, Basel, pp 48–61Google Scholar
  61. Saletu B, Grünberger J (1985) Classification and determination of cerebral bioavailability of fluoxetine: pharmacokinetic, pharmaco-EEG and psychometric analyses. J Clin Psychiatry 46: 3 [Sec 2]: 45–52Google Scholar
  62. Saletu B, Grünberger J, Flener R, Linzmayer L, Sieroslawski H (1976) Determination of psychoactivity and cerebral bioavailability of danitracene (WA 335) by quantitative pharmaco-EEG and psychometric investigations. Curr Ther Res 20: 810–820Google Scholar
  63. Saletu B, Grünberger J, Linzmayer L, Anderer P (1980a) Classification arid assessment of pharmacodynamics of SGD-SCHA 1059 (Binodaline) by quantitative EEG and psychometric analyses. In: Perris C, Knorring L, Kemali D (eds) Clinical neurophysiological aspects of psychopathological conditions. Karger, Basel, pp 140–166 (Adv Biol Psychiat)Google Scholar
  64. Saletu B, Grünberger J, Rajna P, Karobath M (1980b) Clovoxamine and FLUvoxamine-2 biogenic amine re-uptake inhibiting antidepressants: quantitative EEG, psychometric and pharmacokinetic studies in man. J Neural Transm 49: 63–86Google Scholar
  65. Saletu B, Grünberger J, Taeuber K, Nitsche V (1982) Relation between pharmac odynamics and -kinetics: EEG and psychometric studies with cinolazepam and nomifensine. In: Herrmann W (ed) EEG in drug research. Fischer, Stuttgart New York, pp 89–111Google Scholar
  66. Saletu B, Grünberger J, Rajna P (1983a) Pharmaco-EEG profiles of antidepressants. Pharmacodynamic studies with fluvoxamine. Br J Clin Pharmacol 15: 369–384Google Scholar
  67. Saletu B, Grünberger J, Linzmayer L, Wittek R, Stöhr H (1983b) Klassifikation und Bestimmung der Pharmakodynamik eines neuen tetrazyklischen Antidepressivums, Pirlindol, mittels Pharmako-EEG und Psychometrie. Wien Klin Wochenschr 95: 481–493Google Scholar
  68. Saletu B, Grünberger J, Linzmayer L (1985) Early clinical pharmacological studies with sercloremine—a novel antidepressant — utilizing pharmacokinetic, pharmaco-EEG and psychometric analyses. Drug Dev Res 6: 19–38Google Scholar
  69. Saletu B, Grünberger J, Linzmayer L (1986) On central effects of serotonin re-uptake inhibitors: quantitative EEG and psychometric studies with sertraline and zimelidine. J Neural Transm 67: 241–266Google Scholar
  70. Saletu B, Anderer P, Kinsperger K, Grünberger J (1987) Topographic brain mapping of EEG in neuropsychopharmacology, part II. Clinical applications (Pharmaco EEG imaging). Meth Find Exp Clin Pharmacol 9(6): 385–408Google Scholar
  71. Saletu B, Grünberger J, Anderer P, Linzmayer L, Semlitsch HV, Magni G (1992) Pharmacodynamics of venlafaxine evaluated by EEG brain mapping, psychometry and psychophysiology. Br J Clin Pharmacol 33: 589–601Google Scholar
  72. Saletu B, Brandstätter N, Anderer P, Semlitsch HV, Binder G, Decker K, Metka M, Huber J, Knogler W (1993) Neurophysiological investigations in menopausal syndrome with and without depression and normal controls: EEG and EP mapping. Neuropsychopharmacology 9(2S): 61–61Google Scholar
  73. Salvadori C, Ward C, Defrance R, Hopkins R (1990) The pharmacokinetics of the antidepressant tianeptine and its main metabolite in healthy humans — influence of alcohol co-administration. Fund Clin Pharmacol 4: 115–125Google Scholar
  74. Sandler M, Coppen A, Harnett S (eds) (1991) 5-Hydroxytryptamine in psychiatry. A spectrum of ideas. Oxford Medical Publications, Oxford New York TokyoGoogle Scholar
  75. Semlitsch HV, Anderer P, Schuster P, Presslich O (1986) A solution for reliable and valid reduction of ocular artifacts applied to the P300 ERP. Psychophysiology 23: 695–703Google Scholar
  76. Staner L, Bertolino A, Cassano GB, De Wilde J, Ferreira L, Kasas A, Mendlewicz J, Mertens C, Paes de Sousa M, Sarteschi P, Van HA, Ozun M, Loo H (1994) European multicenter study of tianeptine versus imipramine and placebo in the treatment of major depression and depressed bipolar disorders. Eur Psychiatry 9 [Suppl 1]: 140Google Scholar
  77. Thiebot MH, Martin P, Puech AJ (1991) Animal behavioural studies in the evaluation of antidepressant drugs. Br J Psychiatry 160(15): 44–50Google Scholar
  78. Tucker DM (1981) Asymmetrical frontal lobe function during a transient depressive state. In: Perris C, Kemali D, Vacca L (eds) Electroneurophysiology and psychopathology. Karger, Basel, pp 68–71Google Scholar
  79. Von Zerssen D, Koeller DM, Rey ER (1970) Die Befindlichkeitsskala (B-S) — ein einfaches Instrument zur Objektivierung von Befindlichkeitsstörungen, insbesondere im Rahmen von Längsschnittuntersuchungen. Arzneimittelforschungl Drug Res 20: 915–918Google Scholar
  80. Whitton PS, Sarna GS, Curzon G (1991) Effects of tianeptine on stress-induced behavioural deficits and 5-HT dependent behaviour. Psychopharmacology 104: 81–85Google Scholar
  81. Yozawitz A, Bruder G, Sutton S, Sharpe L, Gurland B, Fleiss J, Costa L (1979) Dichotic perception: evidence for right hemisphere dysfunction in affective psychosis. Br J Psychiatry 135: 229–237Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • B. Saletu
    • 1
  • J. Grünberger
    • 1
  • P. Anderer
    • 1
  • L. Linzmayer
    • 1
  • G. Zyhlarz
    • 1
  1. 1.Department of Psychiatry, School of MedicineUniversity of ViennaViennaAustria

Personalised recommendations