, Volume 117, Issue 2, pp 97–106 | Cite as

Microarchitecture and elemental spatial segregation of envelopes ofTrachelomonas lefevrei (Euglenophyceae)

  • J. R. Dunlap
  • Patricia L. Walne
  • J. Bentley


Envelopes of the euglenoid flagellate,Trachelomonas lefevrei may range in color from hyaline to golden to dark brown and may be variously ornamented with spines, papillae and puncta. Elemental composition affects both envelope color and microarchitecture, which may be granular and/or microcrystalline. TEM-EDS microanalyses of granular envelopes or regions show Fe as the predominant element, whereas Mn is the predominant element in envelopes or regions with high concentrations of needle-like microcrystallites. In envelopes composed of both structural components, there is a spatial segregation of Fe and Mn that corresponds to the distribution of the granular and/or microcrystalline entities. Extraction of the needle-like components with leucoberbelin blue indicates that they are Mn oxides. Quantitative elemental analyses show shifting ratios of Mn: Fe that correlate with envelope color and microarchitecture. This is the first direct demonstration both of such a spatial segregation of elements and of the presence of Mn oxides in envelopes ofTrachelomonas.


Biomineralization Quantitative elemental microanalysis Envelope microarchitecture Iron Manganese Trachelomonas 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Chandler, J. A., 1977: X-ray Microanalysis in the Electron Microscope. In: Practical Methods in Electron Microscopy (Glauert, A. M., ed.), pp. 317–547, Amsterdam-New York-Oxford: North-Holland Publishing Co.Google Scholar
  2. Deflandre, G., 1926: Monographie du genreTrachelomonas Ehrenberg. Rev. Gen. Bot.39, 73–98.Google Scholar
  3. Donnelly, L. S., 1979: Comparative cellular ultrastructure and chemical characterization of envelopes of three species ofTrachelomonas (Euglenophyta). Ph.D. Dissertation, University of Tennessee, Knoxville. 194 pp.Google Scholar
  4. —,Walne, P. L., 1979: Comparative ultrastructure of three species ofTrachelomonas (Euglenophyceae). ASB Bulletin26, 46.Google Scholar
  5. Dunlap, J. R., Kivic, P. A., Walne, P. L., 1981a: Comparative ultrastructure and STEM-EDS analysis of envelopes ofTrachelomonas lefevrei andStrombomonas conspersa (Euglenophyceae). J. Phycol.17 (Suppl.), 15.Google Scholar
  6. —,West, L. K., Walne, P. L., Bentley, J., 1981b: Spatial segregation of manganese and iron in the envelope ofTrachelomonas lefevrei (Euglenophyceae). ASB Bulletin28, 48.Google Scholar
  7. Fritsch, F. E., 1935: The structure and reproduction of the algae, Vol. 1, 791 pp. Cambridge: University Press.Google Scholar
  8. Ghiorse, W. C., Hirsch, P., 1979: An ultrastructural study of iron and manganese deposition associated with extracellular polymers of Pedomicrobium-like budding bacteria. Arch. Microbiol.123, 213–226.Google Scholar
  9. Hall, T. A., Gupta, B. L., 1979: EDS quantitation and applications to biology. In: Introduction to Analytical Electron Microscopy (Hern, J. J., Goldstein, J. I., Joy, D. C., eds.), pp. 169–197. New York: Plenum Publishing Corporation.Google Scholar
  10. Klebs, G., 1883: Über die Organisation einiger Flagellatengruppen. Unters. bot. Inst. Tübingen1, 233–262.Google Scholar
  11. Krumbein, W. E., Altmann, H. J., 1973: A new method for the detection and enumeration of manganese oxidizing and reducing microorganisms. Helgoland. wiss. Meeresunters.25, 347–356.Google Scholar
  12. Leedale, G. F., 1975: Envelope formation and structure in the euglenoid genusTrachelomonas. Brit. phycol. J.10, 17–41.Google Scholar
  13. Moss, M. O., Gibbs, G., 1979: A comparison of the levels of manganese and iron in the test ofTrachelomonas Ehrenb. in Surrey Rivers. Brit. phycol. J.14, 255–262.Google Scholar
  14. Parker, B. C., Diboli, A. G., 1966: Alcian stains for histochemical localization of acid and sulfated polysaccharides in algae. Phycologia6, 37–46.Google Scholar
  15. Pringsheim, E. G., 1953: Observations on some species ofTrachelomonas grown in culture. New Phytol.52, 93–113.Google Scholar
  16. Smith, G. M., 1950: The fresh-water algae of the United States, 716 p. New York: McGraw-Hill.Google Scholar
  17. Spurr, A. R., 1969: A low viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res.26, 31–43.Google Scholar
  18. van Veen, W. L., Mulder, E. G., Deinema, M. H., 1978: TheSphaerotilus-Leptothrix Group of Bacteria. Microbiol. Rev.42, 329–356.Google Scholar
  19. Walne, P. L.,Gerard, D. A.,Dunlap, J. R.,West, L. K., 1981: Lorica development and elemental composition in the unicellular flagellatesTrachelomonas (Euglenoidina) andPteromonas (Phytomonadina). Proceedings of the VI International Congress of Protozoology, Warsaw, Poland, p. 385.Google Scholar
  20. West, L. K., 1977: Cellular organization and biomineralization of the envelope ofTrachelomonas hispida var.coronata. Ph. D. Dissertation. University of Tennessee, Knoxville, 245 pp.Google Scholar
  21. —,Walne, P. L., 1977: Manganese biomineralization in cell envelopes ofTrachelomonas (Euglenophyceae). J. Cell Biol.75, 409 a.Google Scholar
  22. — —, 1980:Trachelomonas hispida var.coronata (Euglenophyceae). II. Envelope substructure. J. Phycol.16, 498–506.Google Scholar
  23. — —,Bentley, J., 1980:Trachelomonas hispida var.coronata. III. Envelope elemental composition and mineralization. J. Phycol.16, 582–591.Google Scholar
  24. Zaluzec, N. J., 1979: Quantitative X-ray microanalysis: Instrumental considerations and applications to material science. In: Introduction to Analytical Electron Microscopy (Hren, J. J., Goldstein, J. I., Joy, D. C., eds.), pp. 121–167. New York: Plenum Publishing Corporation.Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • J. R. Dunlap
    • 1
  • Patricia L. Walne
    • 1
  • J. Bentley
    • 2
  1. 1.Department of BotanyUniversity of TennesseeKnoxvilleUSA
  2. 2.REMAG, Metals and Ceramics DivisionOak Ridge National LaboratoryOak Ridge

Personalised recommendations