, Volume 197, Issue 3–4, pp 210–216 | Cite as

Electron-opaque annular structure girdling the constricting isthmus of the dividing chloroplasts ofHeterosigma akashiwo (Raphidophyceae, Chromophyta)

  • Haruki Hashimoto
Original Articles


The plastokinesis (kinesis of chloroplasts) of a raphidophyte alga,Heterosigma akashiwo, was studied by electron microscopy using rapid freezing and freeze-substitution techniques. The chloroplasts are enveloped by two pairs of tightly appressed double membranes, the inner and the cytoplasmic outer pair. The inner pair constricts to divide in advance of the outer pair. By observation of serial sections an electron-opaque, annular structure (plastid-dividing ring) was observed at the isthmus of constricting chloroplasts, girdling the periplastidal outer surface of the inner pair of the four surrounding membranes. These observations suggest that the mechanisms underlying the constriction of the inner and outer pair may differ from each other. The localization of the annular structure (plastid-dividing ring) suggests that the inner pair of the surrounding membranes may be homologous to the double envelope membranes of the chloroplasts of Chlorophyta and Rhodophyta. In addition these findings provide a new evidence supporting the secondary endosymbiosis hypothesis for the origin of the chloroplasts in chromophyte algae.


Chloroplast division Chloroplast envelope Chromophyta Heterosigma akashiwo Plastid-dividing ring Secondary endosymbiosis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beech PL, Lambiris I, Deane J (1993) Aspects of the cytoskeleton of chromophyte algae. In: Proceedings of 15th International Botanical Congress at Yokohama, August 28 through September 3, 1993, p 13Google Scholar
  2. Bouck GB (1965) Fine structure and organelle associations in brown algae. J Cell Biol 26: 523–537Google Scholar
  3. Cavalier-Smith T (1982) The origin of plastids. Biol J Linn Soc 17: 289–306Google Scholar
  4. — (1993) The origin, losses and gains of chloroplast. In: Levin RA (ed) Origins of plastids. Chapman and Hall, New York, pp 291–348Google Scholar
  5. Chida Y, Ueda K (1991) Division of chloroplasts in a green alga,Trebouxia potteri. Ann Bot 67: 435–442Google Scholar
  6. Duckett JG, Ligrone R (1993a) Plastid dividing rings in the liverwortOdontoschisma denudatum (Mart) Dum. (Jungermanniales, Hepaticeae). G Bot Ital 127: 318–319Google Scholar
  7. — — (1993b) Plastid dividing rings in ferns. Ann Bot 72: 619–627Google Scholar
  8. Douglas SE, Murphy CA, Spencer DF, Gray MW (1991) Cryptomonad algae are evolutionary chimaeras of two phylogenetically distinct unicellular eukaryotes. Nature 350: 148–151Google Scholar
  9. Gibbs SP (1978) The chloroplasts ofEuglenia may have evolved from symbiotic green algae. Can J Bot 56: 2883–2889Google Scholar
  10. — (1981) The chloroplasts of some algal groups may have evolved from endosymbiotic eukaryotic algae. Ann N Y Acad Sci 361: 193–208Google Scholar
  11. — (1992) The evolution of algal chloroplasts. In: Levin RA (ed) Origin of plastids. Chapman and Hall, New York, pp 107–121Google Scholar
  12. Hashimoto H (1985) Changes in distribution of nucleoids in developing and dividing chloroplasts and etioplasts ofAvena sativa. Protoplasma 127: 119–127Google Scholar
  13. — (1986) Double ring structure around the constricting neck of dividing plastids ofAvena sativa. Protoplasma 135: 166–172Google Scholar
  14. — (1992) Involvement of actin filaments in chloroplast division of the algaClosterium ehrenbergii. Protoplasma 167: 88–96Google Scholar
  15. —, Possingham JV (1989) Division and DNA distribution in ribo some-deficient plastids of the barley mutant “albostrians”. Protoplasma 149: 20–23Google Scholar
  16. Heywood P (1989) Some affinities of the Raphidophyceae with other chromophyte algae. In: Green JC, Leadbeater BSC, Diver WL (eds) The chromophyte algae: problems and perspectives. Clarendon, Oxford, pp 279–293Google Scholar
  17. Kuroiwa T, Suzuki K, Kuroiwa H (1993) Mitochondrial division by an electron-dense ring inCyanidioschyzon merolae. Protoplasma 175: 173–177Google Scholar
  18. Magnussen C, Gibbs SP (1980) Behavior of chloroplast ER during chloroplast division inOlisthodiscus luteus (Chrysophyceae). J Phycol 16: 303–305Google Scholar
  19. McFadden GI, Gilson PR, Douglas SE (1994) The photosynthetic endosymbiont in cryptomonad cells produces both chloroplast and cytoplasmic-type ribosomes. J Cell Sci 107: 649–657Google Scholar
  20. Mita T, Kuroiwa T (1988) Division of plastids by a plastid-dividing ring inCyanidium caldarium. Protoplasma Suppl 1: 133–152Google Scholar
  21. —, Kanbe T, Tanaka K, Kuroiwa T (1986) A ring structure around the dividing plane of theCyanidium caldarium chloroplast. Protoplasma 130: 211–213Google Scholar
  22. Oross JW, Possingham JV (1989) Ultrastructural features of the constricted region of dividing plastids. Protoplasma 150: 131–138Google Scholar
  23. Rose RJ (1979) The association of chloroplast DNA with photosynthetic membrane vesicles from spinach chloroplasts. J Cell Sci 36: 169–183Google Scholar
  24. — (1988) The role of membranes in the segregation of plastid DNA. In: Boffey SA, Lloyd D (eds) The division and segregation of organelles. Cambridge University Press, Cambridge, pp 171–195Google Scholar
  25. Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26: 31–43Google Scholar
  26. Tewinkel M, Volkmann D (1987) Observations on dividing plastids in the protonemata of the mossFunaria hygrometrica Sibth. Arrangement of microtubules and filaments. Planta 172: 309–320Google Scholar
  27. Ueda K, Nonaka M (1992) Division of chloroplasts in a green alga,Pediastrum duplex. Ann Bot 69: 113–118Google Scholar
  28. Whatley JM (1993) The endosymbiotic origin of chloroplasts. Int Rev Cytol 144: 259–299Google Scholar
  29. —, Whatley FR (1981) Chloroplast evolution. New Phytol 87: 233–247Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Haruki Hashimoto
    • 1
  1. 1.Department of Biology, Graduate School of Arts and SciencesUniversity of TokyoTokyoJapan

Personalised recommendations