Advertisement

Protoplasma

, Volume 126, Issue 1–2, pp 36–46 | Cite as

Morphogenesis of twisted cell wall: Chronology following an osmotic shock

  • D. Reis
  • J. C. Roland
  • B. Vian
Article

Summary

The effect of an osmotic shock on the subsequent growth and cell wall texture was studied at 0, 1/2, 1, 2, 4 and 24 hours. Cells were taken at the beginning of their exponential growth from mung bean hypocotyl.

The shock reveals the instability and the fragility of the assembly mechanisms. It induces a rupture in the texture (formation of a loose layer) or, occasionally, the apparition of a swirling pattern. After the shock, the twisting positioning can be restored. The “post-shock” deposit appears similar to the “pre-shock” deposit. The loose layer provides a visible guide-mark (time marker) within the wall. It allows one to evaluate the oscillatory period (i.e., the duration necessary for a 180° rotation of the microfibrils). This period was found to be ca. 3 hours following a lag period of ca. 1 hour. It confirms the endogenous ultradian character of the rhythm of the assembly.

Keywords

Cell wall Growth Osmotic shock Rhythm Twisted assembly 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aspinall, G. O., 1982: In: The Polysaccharides, Vol. I, pp. 1–18. London: Academic Press.Google Scholar
  2. Brant, D. A., 1980: Conformation and behavior of polysaccharides in solution. In: The Biochemistry of Plants, Vol. 3, Carbohydrates: Structure et Function (Preiss, J., ed.), pp. 425–472. London: Academic Press.Google Scholar
  3. Brown, G. H., Wolken, J. J., 1979: Liquid crystals and biological structures. London: Academic Press.Google Scholar
  4. Bouligand, Y., 1972: Twisted fibrous arrangements in biological materials and cholesteric mesophases. Tissue and Cell4, 189–217.Google Scholar
  5. Cavalieri, A., Boyer, J. S., 1982: Water potentials induced by growth in soybean hypocotyls. Plant Physiol.69, 492–496.Google Scholar
  6. Cleland, R., 1971: Cell wall extension. Ann. Rev. Plant Physiol.22, 197–222.Google Scholar
  7. Colvin, J. R., 1980: The biosynthesis of cellulose. In: The biochemistry of Plants. Vol. 3. Carbohydrates: Structure and Function (Preiss, J., ed.), pp. 544–570. London: Academic Press.Google Scholar
  8. Delmer, D. P., 1977: In: Recent Advances in Phytochemistry, Vol. 2 (Loewus, F. A., Runeckles, V. C., eds.), pp. 45–77. New York: Plenum Press.Google Scholar
  9. Kramer, P. J., 1983: Problems in water relations of plant and cells. Int. Rev. Cytol.85, 253–282.Google Scholar
  10. Lesieur, M., 1982: La turbulence développée. La Recherche139, 1412–1425.Google Scholar
  11. Mizuta, S., Wada, S., 1982: Effect of light and inhibitors on polylamellation and shift of microfibril orientation inBoergesenia cell wall. Plant Cell Physiol.23, 257–264.Google Scholar
  12. Neville, A. C., 1967: Daily growth layers in animals and plants. Biol. Rev.42, 411–441.Google Scholar
  13. -Levy, S., 1984: Helicoidal orientation of cellulose microfibrils inNitella opaca internode cells: ultrastructure and computed theoretical effects of strain reorientation during wall growth. Planta162, in press.Google Scholar
  14. —,Luke, B. M., 1969: A two-system model for chitin-protein complexes in insect cuticles. Tissue and Cell1, 689–707.Google Scholar
  15. Peng, H. B., Jaffe, L. F., 1976: Cell wall formation inPelvetia embryos. A freeze-fracture study. Planta133, 57–71.Google Scholar
  16. Prat, R., Vian, B., Reis, D., Roland, J. C., 1977: Evolution of internal pressure, vacuolation and membrane flow, during cell growth in mung bean hypocotyl. Biol. Cell.28, 269–280.Google Scholar
  17. Preston, R. D., 1974: The physical biology of plant cell walls, p. 214. London: Chapman and Hall ed.Google Scholar
  18. Quader, H., Robinson, D. G., 1979: Structure synthesis and orientation of microfibrils. VI. The role of ions in microfibril deposition inOocystis solitaria. Eur. J. Cell Biol.20, 51–56.PubMedGoogle Scholar
  19. Rees, D. A., Morris, E. R., Thom, D., Madden, J. K., 1982: Shapes and interactions of carbohydrate chains. In: The Polysaccharides, Vol. 1, pp. 195–290. London: Academic Press.Google Scholar
  20. Reis, D., 1978: Précisions cytochimiques sur l'assemblagein vitro des hémicelluloses de l'hypocotyle de soja (Phaseolus aureus Roxb.) Ann. Sc. Nat.19, 163–193.Google Scholar
  21. - 1984: Assembly changes induced in cell wall following an osmotic shock. 3rd Cell Wall Meeting, Fribourg, 1984.Google Scholar
  22. —,Mosiniak, M., Vian, B., Roland, J. C., 1982: Cell walls and cell shape. Changes in texture correlated with an ethylene-induced swelling. Ann. Sc. Nat.4, 115–133.Google Scholar
  23. Richmond, P. A., 1984: Cellulose synthesis inhibition and patterns of cell wall deposition. 3rd Cell Wall Meeting, Fribourg, 1984.Google Scholar
  24. Roland, J. C., Prat, R., 1973: Les protoplastes et quelques problèmes concernant le rôle et l'élaboration des parois. Colloques Internationaux CNRS,212, 243–272.Google Scholar
  25. —,Reis, D., Mosiniak, M., Vian, B., 1982: Cell wall texture along the growth gradient of the mung bean hypocotyl: ordered assembly and dissipative processes. J. Cell. Sci.56, 303–318.Google Scholar
  26. — —,Vian, B., Satiat-Jeunemaitre, B., 1983: Traduction du temps en espace dans les parois des cellules végétales. Ann. Sc. Nat.5, 173–192.Google Scholar
  27. - -Satiat-Jeunemaitre, B.,Vian, B., 1984: Emergence and instability of twisted order in growing cell walls. 3rd Cell Wall Meeting, Fribourg, 1984.Google Scholar
  28. Satiat-Jeunemaitre, B., 1984: Experimental modifications of the twisting and rhythmic pattern in the cell walls of maize coleoptile. Biol. Cell51, in press.Google Scholar
  29. Vian, B., Mosiniak, M., Reis, D., Roland, J. C., 1982: Dissipative process and experimental retardation of the twisting in the growing plant cell wall. Effect of ethylene-generating agent and colchicine: a morphogenetic revaluation. Biol. Cell.46, 301–310.Google Scholar
  30. Young, O. A., Service, M. J., 1971: Slow viscous flow and the organization of the cell wall in conifer tracheids. Wood Sc. and Technol.5, 1–5.Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • D. Reis
    • 1
  • J. C. Roland
    • 1
  • B. Vian
    • 1
  1. 1.Laboratoire de Biologie Végétale-Cytologie ExpérimentaleÉcole Normale SupérieureParis Cedex 05France

Personalised recommendations