Protoplasma

, Volume 198, Issue 3–4, pp 210–217 | Cite as

Nuclear magnetic resonance microscopy ofAncistrocladus heyneanus

  • M. Meininger
  • R. Stowasser
  • P. M. Jakob
  • H. Schneider
  • D. Koppler
  • G. Bringmann
  • U. Zimmermann
  • A. Haase
Article

Summary

The tropical lianaAncistrocladus heyneanus, which is known for its biologically active naphthylisoquinoline alkaloids, has been studied by nuclear magnetic resonance (NMR) microscopy for the first time. The spatial resolution of the cross-sectional NMR images was of the order of 20 μm. Quantitative NMR relaxation time images of the root and the shoot show great contrast between different tissue regions. In addition, we observed the regional distribution of chemical compounds inAncistrocladus heyneanus by chemical-shift NMR microscopy. The NMR imaging results were compared with light and fluorescence microscopic images and reveal the excellent tissue characterization using NMR technology.

Keywords

Nuclear magnetic resonance micro-imaging Chemical-shift imaging Fluorescence microscopy Ancistrocladus heyneanus Ancistrocladaceae Naphthylisoquinoline alkaloids 

Abbreviations

NMR

nuclear magnetic resonance

CSI

chemical-shift magnetic resonance imaging

FOV

field of view

TE

echo time

TR

repetition time

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bentrup FW (1996) NMR-microscopy: observing xylem and phloem conduits at work. Bot Acta 109: 177–179Google Scholar
  2. Bottomley PA, Rogers HH, Foster TH (1986) NMR imaging shows water distribution and transport in plant root systems in situ. Proc Natl Acad Sci USA 83: 87–89Google Scholar
  3. Bringmann G, Pokorny F (1995) The naphthylisoqumoline alkaloids. In: Cordell GA (ed) The alkaloids, vol 46. Academic Press, New York, pp 127–271Google Scholar
  4. — —, Zinsmeister HD (1991)Ancistrocladus, eine botanisch und chemisch bemerkenswerte Gattung. Palmengarten 55/3: 13–18Google Scholar
  5. —, Schneider C, Pokorny F, Lorenz H, Fleischmann H, Sankara Narayanan AS, Almeida MR, Govindachari TR, Aké Assi L (1993) The cultivation of tropical lianas of the genus Ancistrocladus. Planta Med 59 Suppl: 623–624Google Scholar
  6. —, Koppler D, Wiesen B, Francois G, Sankara Narayanan AS, Almeida MR, Schneider H, Zimmermann U (1996) Ancistroheynine A, the first 7,8′-coupled naphthylisoqumoline alkaloid fromAncistrocladus heyneanus. Phytochemistry 43: 1405–1410Google Scholar
  7. Brown TR, Kincaid BM, Ugurbil K (1982) NMR chemical shift imaging in three dimensions. Proc Natl Acad Sci USA 79: 3523–3526Google Scholar
  8. Callaghan PT (1991) Principles of nuclear magnetic resonance microscopy. Clarendon Press, OxfordGoogle Scholar
  9. Connelly A, Lohman AB, Loughman BC, Quiquampoix H, Ratcliffe RG (1987) High resolution imaging of plant tissues by NMR. J Exp Bot 38: 1713–1723Google Scholar
  10. Freeman R, Hill K (1971) Fourier transform study of NMR spin-lattice relaxation by progressive saturation. J Chem Phys 54: 3367–3371Google Scholar
  11. Haase A, Brandl M, Kuchenbrod E, Link A (1993) Magnetization prepared NMR microscopy. J Magn Reson A 105: 230–233Google Scholar
  12. Hills BP, Duce SL (1990) The influence of chemical and diffusive exchange on water proton transverse relaxation in plant tissues. Magn Reson Imag 8: 321–331Google Scholar
  13. Johnson GA, Brown J, Kramer PJ (1987) Magnetic resonance microscopy of changes in water content in stems of transpiring plants. Proc Natl Acad Sci USA 84: 2752–2755Google Scholar
  14. Kuchenbrod E, Benkert R, Schneider H, Haase A, Zimmermann U (1995) Quantitative NMR microscopy on intact plants. Magn Reson Imag 13: 447–455Google Scholar
  15. —, Landeck M, Thürmer F, Haase A, Zimmermann U (1996) Measurements of water flow in the xylem vessels of intact maize plants using flow-sensitive NMR imaging. Bot Acta 109: 184–186Google Scholar
  16. - Kahler E, Thürmer F, Deichmann R, Zimmermann U, Haase A (1997) Functional magnetic resonance imaging in intact plants — quantitative observation of flow in plant vessels. Magn Reson Imag (in press)Google Scholar
  17. MacFall JS, Johnson GA, Kramer PJ (1990) Observation of a water-depletion region surrounding loblolly pine roots by magnetic resonance imaging. Proc Natl Acad Sci USA 87: 1203–1207Google Scholar
  18. —, Pfeffer PE, Rolin DB, MacFall JR, Johnson GA (1992) Observation of the oxygen diffusion barrier in soybean (Glycine max) nodules with magnetic resonance microscopy. Proc Natl Acad Sci USA 87: 1203–1207Google Scholar
  19. Metzler A, Köckenberger W, von Kienlin M, Komor E, Haase A (1994) Quantitative measurement of sucrose distribution inRicinus communis seedlings by chemical-shift microscopy. J Magn Reson B 105: 249–252Google Scholar
  20. —, Izquierdo M, Ziegler A, Köckenberger W, Komor E, von Kienlin M, Haase A, Décorps M (1995) Plant histochemistry by correlation peak imaging. Proc Natl Acad Sci USA 92: 11912–11915Google Scholar
  21. Rumpel H, Pope J (1992) The application of 3D chemical shift microscopy to noninvasive histochemistry. Magn Reson Imag 10: 187–194Google Scholar
  22. Sarafis V, Rumpel H, Pope J, Kuhn W (1990) Noninvasive histochemistry of plant materials by magnetic resonance microscopy. Protoplasma 159: 70–73Google Scholar
  23. Schafsma TJ, van As H, Palstra WD, Snaar JE, de Jager PA (1992) Quantitative measurement and imaging of transport processes in plants and porous media by1H NMR. Magn Reson Imag 10: 827–836Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • M. Meininger
    • 1
  • R. Stowasser
    • 2
  • P. M. Jakob
    • 1
  • H. Schneider
    • 3
  • D. Koppler
    • 2
  • G. Bringmann
    • 2
  • U. Zimmermann
    • 3
  • A. Haase
    • 1
  1. 1.Lehrstuhl für Experimentelle Physik VUniversität WürzburgWürzburg
  2. 2.Lehrstuhl für Organische Chemie IUniversität WürzburgWürzburg
  3. 3.Lehrstuhl für BiotechnologieUniversität WürzburgWürzburg

Personalised recommendations