, Volume 131, Issue 2, pp 185–199 | Cite as

The glucuronoxylans and the helicoidal shift in cellulose microfibrils in linden wood: Cytochemistryin muro and on isolated molecules

  • B. Vian
  • D. Reis
  • M. Mosiniak
  • J. C. Roland


In fibres of wood, the classical S1 and S2 layers are connectedvia a transition zone where a helicoidal texture occurs. In order to understand the actual mechanism of cellulose microfibril rotation in this zone, the study of relationship between cellulose and matrix was undertaken cytochemically at the ultrastructural level.

Glucuronoxylans,i.e., the main hemicellulose component of hardwood, were studied in cell walls of linden tree. Xylanase-gold complexes were used as a new cytochemical tool to directly and specifically label glucuronoxylans within the wall of fibres. Subtractive localization (KOH or DMSO extraction and PATAg test or shadowing) associated with chemical analysis was carried out as control. The study of isolated glucuronoxylan molecules was undertaken in parallel.

Both from direct (xylanase-gold labeling) and indirect techniques (extractions), glucuronoxylans appear preferentially concentrated in the transition zone which overlaps the layers S1 and S2. A comparison between KOH and DMSO extraction indicates a difference in accessibility of glucuronoxylans distributed across the whole wall and those located in the transition zone. Isolated molecules have a rodlike aspect and show a tendancy to spatially organize in parallel alignment. Cytochemical labeling of the isolated molecules concerns covalent linkages, vic-glycol groups and acid side groups along the main chain.

The preferential localization indicates that in the helicoidal zone glucuronoxylans constitute a thick matrix embedding the cellulose microfibrils in the course of rotation. This data leads to a discussion of how these localized matrix molecules could intervene in the assembly and the twisted morphogenesis of the fibre cell wall.


Cell wall Enzyme-gold method Twisted morphogenesis Hemicelluloses 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, G. A., 1965: Arabinoglucuronoxylan, arabinoxylan and xylan; purification using a copper complex and purification by fractional precipitation of acetates. In: Methods in Carbohydrate Chemistry, Vol. 5 (Whistler, R. L., ed.), pp. 170–175. New York and London: Academic Press.Google Scholar
  2. Aspinall, G. O., 1980: Chemistry of cell wall polysaccharides. In: The Biochemistry of Plants, Vol. 3 (Preiss, J., ed.), pp. 473–500. New York: Academic Press.Google Scholar
  3. Bendayan, M., 1981: Ultrastructural localization of nucleic acids by the use of enzyme gold complexes. J. Histochem. Cytochem.29, 531–541.Google Scholar
  4. —, 1984: Enzyme-gold electron microscopic cytochemistry: a new affinity approach for the ultrastructural localization of macromolecules. J. Electr. Microsc. Tech.1, 349–372.Google Scholar
  5. Blumenkrantz, N., Asboe-Hansen, G., 1973: New method for quantitative determination of uronic acids. Analyt. Biochem.54, 484–489.Google Scholar
  6. Bouligand, Y., 1972: Twisted fibrous arrangements in biological materials and cholesteric mesophases. Tissue and Cell4, 189–217.Google Scholar
  7. —,Denefle, J. P., Lechaire, J. P., Maillard, M., 1985: Twisted architectures in cell-free assembled collagen gels: study of collagen substrates used for cultures. Biol. Cell54, 143–162.Google Scholar
  8. Bouveng, H. O., Lindberg, B., 1965: Native acetylated wood polysaccharides. Extraction with Dimethylsulfoxide. In: Methods in Carbohydrate Chemistry, Vol. 5 (Whistler, R. L., ed.), pp. 147–150. New York and London: Academic Press.Google Scholar
  9. Brown, G. H., Wolken, J., 1979: Liquid crystals and Biological Structures. New York: Academic Press.Google Scholar
  10. Catt, J. W., Hills, G. J., Roberts, K., 1978: Cell wall glycoproteins fromChlamydomonas reinhardii, and their self assembly. Planta138, 91–98.Google Scholar
  11. Chamberland, H., Charest, P. M., Ouellette, G. B., Pauze, F. J., 1985: Chitinase-gold complex used to localize chitin ultrastructurally in tomato root cells infected byFusarium oxysporum f. sp.radicis lycopersici compared with a chitin specific goldconjugated lectin. Histoch.17, 313–321.Google Scholar
  12. Chanzy, H., Chumpitazi, B., Peguy, A., 1982: Solutions of polysaccharides in N-methyl morpholine N-oxide (MMNO). Carboh. Polym.2, 35–42.Google Scholar
  13. Cote, W. A., 1977: Wood ultrastructure in relation to chemical composition. In: The Structure, Biosynthesis, and Degradation of Wood (Loewus, F. A., Runeckles, W. C., eds.), pp. 1–43. New York: Plenum Press.Google Scholar
  14. Fengel, D., Przyklenk, M., 1976: Studies on the alkali extract from beech holocellulose. Wood Sc. Technol.10, 311–320.Google Scholar
  15. —,Wegener, G., 1984: Wood. Chemistry, Ultrastructure, Reactions. Berlin: Walter de Gruyter.Google Scholar
  16. Harada, H., 1965: Ultrastructure and organization of gymnosperm cell walls. In: Cellular Ultrastructure of Woody Plants (Cote, W. A., Jr., ed.), pp. 215–233. Syracuse: Syracuse Univ. Press.Google Scholar
  17. Harche, M., Catesson, A. M., 1985: Cell wall architecture in alfa (Stipa tenacissima L.) fibres. IAWA Bull.6, 61–69.Google Scholar
  18. Hoebler, C., Brillouet, J. M., 1984: Purification and properties of an endo-(1-4)-Β-D-xylanase fromIrpex lacteus (Polyporus tulipiferae). Carb. Res.128, 141–155.Google Scholar
  19. Hoffmann, P., Parameswaran, N., 1976: On the ultrastructural localization of hemicelluloses within delignified tracheids of Spruce. Holzforsch.30, 62–70.Google Scholar
  20. Joseleau, J. P., 1980: Les hemicelluloses. In: Les polymères végétaux (Monties, B., ed.), pp. 87–121. Paris: Gauthier-Villars.Google Scholar
  21. Lebel, R. G., Goring, D. A. I., Timell, T. E., 1963: Solution properties of birch xylan. I. Measurement of molecular weight. J. Polymer. Sc.2, 9–28.Google Scholar
  22. Livolant, F., 1984 a: Cholesteric organization of DNAin vivo andin vitro. Eur. J. Cell Biol.33, 300–311.Google Scholar
  23. - 1984b: La structure cristalline liquide de l'ADNin vivo andin vitro. Thesis, Paris.Google Scholar
  24. Marchessault, R. H., Liang, C. Y., 1962: The infrared spectra of crystalline polysaccharides. VIII xylans. J. Polymer Sc.59, 357–378.Google Scholar
  25. Maret, G., Milas, M., Rinaudo, M., 1981: Cholesteric order in aqueous solutions of the polysaccharide xanthan. Polymer Bull.4, 291–297.Google Scholar
  26. Maxwell, M. H., 1978: Two rapide and simple methods used for the removal of resins from 1.0 Μm thick epoxy resins. J. Microsc.112, 253–255.Google Scholar
  27. Meier, H., 1961: The distribution of polysaccharides in wood fibers. J. Polymer Sc.51, 11–18.Google Scholar
  28. Neville, A. C., Levy, S., 1984: Helicoidal orientation of cellulose microfibrils inNitella opaca internode cells: ultrastructure and computed theoretical effects of strain reorientation during wall growth. Planta162, 370–384.Google Scholar
  29. —, 1985: Molecular and mechanical aspect of helicoid development in plant cell walls. Bio Essays3, 4–8.Google Scholar
  30. Nieduzynski, I. A., Marchessault, R. H., 1972: Structure of Β,D(1-4′)-xylane hydrate. Biopolymers11, 1335–1344.Google Scholar
  31. Parameswaran, N., Liese, W., 1982: Ultrastructural localization of wall components in wood cells. Holz als Roh- und Werkstoff40, 145–155.Google Scholar
  32. Preston, R. D., 1979: Polysaccharide conformation and cell wall function. Ann. Rev. Physiol.30, 55–78.Google Scholar
  33. Rees, D. A., 1977: Polysaccharide Shapes, pp. 1–80. London: Chapman and Hall.Google Scholar
  34. Reis, D., 1978: Précisions cytochimiques sur l'assemblagein vitro des hémicelluloses de l'hypocotyle de soja (Phaseolus aureus Roxb.). Ann. Sc. Nat.19, 163–193.Google Scholar
  35. Roberts, I. N., Lloyd, C. W., Roberts, K., 1985: Ethylene-induced microtubule reorientations: mediation by helical arrays. Planta164, 439–447.Google Scholar
  36. Roland, J. C., Vian, B., Reis, D., 1977: Further observations on cell wall morphogenesis and polysaccharide arrangement during plant growth. Protoplasma91, 125–141.Google Scholar
  37. —, 1981: Comparison of arced patterns in growing and non-growing polylamellate cell walls of higher plants. In: Cell Wall's 81, Proc. 2nd Cell Wall Meeting (Robinson, D. G., Quader, H., eds.), pp. 162–169. Stuttgart: Wissenschaftliche Verlagsgesellschaft.Google Scholar
  38. —,Mosiniak, M., 1983: On the twisting pattern, texture and layering of the secondary cell walls of lime wood. Proposal of an unifying model. IAWA Bull.4, 15–26.Google Scholar
  39. —,Reis, D., Vian, B., Satiat-Jeunemaitre, B., 1983: Traduction du temps en espace dans les parois des cellules végétales. Ann. Sc. Nat.5, 173–192.Google Scholar
  40. Roth, J., 1983: The colloidal gold marker system for light and electron microscopy cytochemistry. In: Techniques in Immunocytochemistry, Vol. 2 (Bullock, G. R., Petrusz, P., eds.), pp. 217–284. London: Academic Press.Google Scholar
  41. Rudall, K. M., 1955: Protein ribbons and sheets. Lectures on the Scient. Basis of Medic.5, 217–230.Google Scholar
  42. Ruel, K., 1984: Etude en microscopie électronique des inter-relations cellulose-hémicelluloses-lignine dans les parois végétales. Thesis, Grenoble, France.Google Scholar
  43. —,Joseleau, J. P., 1984: Use of enzyme-gold complexes for the ultrastructural localization of hemicelluloses in the plant cell wall. Histochem.81, 573–580.Google Scholar
  44. Sinner, M., Parameswaran, N., Dietrichs, H. H., Liese, W., 1973: Spezifischer xylanolytischer Abbau der delignifizierten Zellwand von Rotbuchenholz (Fagus silvatica L.). Holzforsch.27, 36–42.Google Scholar
  45. Takabe, K., Fujita, M., Harada, H., Saiki, H., 1984: Incorporation of the label from14C-glucose into cell-wall components during the maturation ofCryptomeria tracheids. Mokuzai Gakkaishi30, 2, 103–109.Google Scholar
  46. Tang, R. C., 1973: The microfibrillar orientation in cell-wall layers of Virginia Pine tracheids. Wood Sc.5, 181–186.Google Scholar
  47. Thiery, J. P., Ovtracht, L., 1981: Chimie ultrastructurale sur molecules isolées d'origine végétale. I. L'alginate. Bull. Soc. Bot. Fr.128, 73–87.Google Scholar
  48. Timell, T. E., 1965 a: Wood and Bark polysaccharides. In: Cellular Ultrastructure of Woody Plants (Coté, W., ed.), pp. 127–156. Press: Syracuse University.Google Scholar
  49. —, 1965 b: Galactoglucomannans from the wood of Gymnosperms. In: Methods in Carbohydrate Chemistry, Vol. 5 (Whistler, R. L., ed.), pp. 135–137. New York and London: Academic Press.Google Scholar
  50. Tsutsui, T., Tanaka, R., 1980: Formation of cholesteric mesophase in some hydroxypropyl cellulose. Organic solvent systems. Polymer J.12, 473–474.Google Scholar
  51. Van, K., Norisuye, T., Teramoto, 1981: Liquid crystal formation in aqueous solutions of polysaccharide schizophyllan. Mol. Cryst. Liq. Cryst.78, 123–134.Google Scholar
  52. Vian, B., Brillouet, J. M., Satiat-Jeunemaitre, B., 1983: Ultrastructural visualization of xylans in cell walls of hardwood by means of xylanase-gold complex. Biol. Cell.49, 179–182.Google Scholar
  53. Wardrop, A. B., Harada, H., 1965: The formation and structure of the cell wall in fibres and tracheids. J. exp. Bot.16, 356–371.Google Scholar
  54. Werbowyj, R. S., Gray, D. G., 1976: Liquid crystalline structure in aqueous hydroxypropyl cellulose solutions. Mol. Cryst. Liq. Cryst.34, 97–103.Google Scholar
  55. White, A. R., 1982: Visualization of cellulases and cellulose degradation. In: Cellulose and Other Natural Polymer Systems (Brown, R. M., ed.), pp. 489–509. New York: Plenum Press.Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • B. Vian
    • 1
  • D. Reis
    • 1
  • M. Mosiniak
    • 1
  • J. C. Roland
    • 1
  1. 1.Laboratoire des Biomembranes et Surfaces Cellulaires VégétalesE.N. S.Paris Cedex 05France

Personalised recommendations