Advertisement

Protoplasma

, Volume 131, Issue 2, pp 153–165 | Cite as

A method for rapid freeze fixation of plant cells

  • Susan A. Lancelle
  • D. A. Callaham
  • P. K. Hepler
Article

Summary

We describe here an apparatus that permits rapid freeze fixation of whole cells, which are then prepared by freeze substitution and resin embedment for examination in the EM. The freezing device utilizes a rotary solenoid that rapidly plunges the specimen holder, a formvar-film-covered thin wire loop, into a well of stirred liquid propane at −180‡C. The rotary solenoid allows for an adjustable, repeatable immersion rate. Substitution takes place at −80 ‡C in acetone with 2% OsO4 and is followed by en bloc staining in either hafnium tetrachloride or uranyl acetate. We have utilized these techniques on plant cells, for which there has been relatively little published work when compared to other organisms. The results show that, with the versatile specimen holder and rapid, repeatable immersion rates, different cell types, including pollen, stamen hairs, and germinating moss spores, can be rapidly frozen with repeatable success. The improved preservation achieved with rapid freeze fixation over conventional chemical fixation reveals itself particularly in the structure of the plasmamembrane, the cytoskeleton, chromatin, and certain endomembrane systems.

Keywords

Freeze substitution Hafnium tetrachloride Plant cell ultrastructure Rapid freeze fixation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bridgman, P. C., Reese, T. S., 1984: The structure of cytoplasm in directly frozen cultured cells. I. Filamentous meshworks and the cytoplasmic ground substance. J. Cell Biol.99, 1655–1668.Google Scholar
  2. Browning, A. J., Gunning, B. E. S., 1977: An ultrastructural and cytochemical study of the wall-membrane apparatus using freeze substitution. Protoplasma93, 7–26.Google Scholar
  3. Costello, M. J., 1980: Ultra-rapid freezing of thin biological samples. Scanning Electron Microscopy II, 361–370.Google Scholar
  4. Costello, M. J., Corless, J. M., 1978: The direct measurement of temperature changes within freeze fracture specimens during rapid quenching in liquid coolants. J. Microsc.112, 17–37.Google Scholar
  5. Ebersold, H. R., Cordier, J.-L., Luthy, P., 1981 a: Bacterial mesosomes: method dependent artifacts. Arch. Microbiol.130, 19–22.Google Scholar
  6. — — —,Muller, M., 1981 b: A freeze substitution and freeze fracture study of bacterial spore structures. J. Ultrastruct. Res.76, 71–81.Google Scholar
  7. Escaig, J., 1982: New instruments which facilitate freezing at 83K and 6K. J. Microsc.126, 221–229.Google Scholar
  8. Fisher, D. B., 1975: Structure of functional soybean sieve elements. Plant Physiol.56, 555–569.Google Scholar
  9. Handley, D. A., Alexander, J. T., Chien, S., 1981: The design and use of a simple device for rapid quench-freezing of biological samples. J. Microsc.121, 273–282.Google Scholar
  10. Hatae, T., Okuyama, K., Fujita, M., 1984: Visualization of the cytoskeletal elements in tissue culture cells by bloc-staining with hafnium chloride after rapid freezing and freeze substitution fixation. J. Electron Microsc.33, 186–190.Google Scholar
  11. Heath, I. B., Rethoret, K., 1982: Mitosis in the fungusZygorhynchus moelleri: evidence for stage specific enhancement of microtubule preservation by freeze substitution. Eur. J. Cell Biol.28, 180–189.Google Scholar
  12. Hepler, P. K., 1976: The blepharoplast ofMarsilea: itsde novo formation and spindle association. J. Cell Sci.21, 361–390.Google Scholar
  13. Heuser, J. E., Reese, T. S., Dennis, M. J., Jan, Y., Jan, L., Evans, L., 1979: Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release. J. Cell Biol.81, 275–300.Google Scholar
  14. —,Kirschner, M. W., 1980: Filament organization revealed in platinum replicas of freeze-dried cytoskeletons. J. Cell Biol.86, 212–234.Google Scholar
  15. Hoch, H. C., Howard, R. J., 1980: Ultrastructure of freeze-substituted hyphae of the basidiomyceteLaetisaria arvalis. Protoplasma103, 281–297.Google Scholar
  16. Howard, R. J., 1981: Ultrastructural analysis of hyphal tip cell growth in fungi: spitzenkorper, cytoskeleton and endomembranes after freeze substitution. J. Cell Sci.48, 89–103.Google Scholar
  17. —,Aist, J. R., 1979: Hyphal tip ultrastructure of the fungusFusarium. J. Ultrastruct. Res.66, 224–234.Google Scholar
  18. Lancelle, S. A., Torrey, J. G., Hepler, P. K., Callaham, D. A., 1985: Ultrastructure of freeze-substitutedFrankia strain HFPCcI3, the actinomycete isolated from root nodules ofCasuarina cunninghamiana. Protoplasma127, 64–72.Google Scholar
  19. McCully, M. E., Canny, M. J., 1985: The stabilization of labile configurations of plant cytoplasm by freeze substitution. J. Microsc.139, 27–33.Google Scholar
  20. McKerracher, L. J., Heath, I. B., 1985: Microtubules around migrating nuclei in conventionally fixed and freeze-substituted cells. Protoplasma125, 162–172.Google Scholar
  21. Mersey, B., McCully, M. E., 1978: Monitoring the course of fixation of plant cells. J. Microsc.114, 49–76.Google Scholar
  22. Ornberg, R. L., Reese, T. S., 1981: Beginning of exocytosis captured by rapid freezing ofLimulus amebocytes. J. Cell Biol.90, 40–54.Google Scholar
  23. Plattner, H., Bachmann, L., 1982: Cryofixation: a tool in biological ultrastructural research. Int. Rev. Cytol.79, 237–304.Google Scholar
  24. Porter, K. R., Anderson, K. L., 1982: The structure of the cytoplasmic matrix preserved by freeze drying and freeze substitution. Eur. J. Cell Biol.29, 83–96.Google Scholar
  25. Robards, A. W., Goodchild, D. J., 1981: A new look at some cooling rates using a purpose designed rate meter. Proc. R. Microsc. Soc.16, 180.Google Scholar
  26. Tiwari, S. C. 1985: Ultrastructural studies on tapetum and pollen development. Ph.D. Dissertation, Australian National University, Canberra, Australia.Google Scholar
  27. —,Wick, S. M., Williamson, R. E., Gunning, B. E. S., 1984: Cytoskeleton and integration of cellular function in cells of higher plants. J. Cell Biol.99, 63s-69s.Google Scholar
  28. Tsukita, S., Yano, M., 1985: Actomyosin structure in contracting muscle detected by rapid freezing. Nature317, 182–184.Google Scholar
  29. —,Usukura, J., Ishikawa, H., 1982: Myosin filaments in smooth muscle cells of the guinea pig taenia coli: a freeze substitution study. Eur. J. Cell Biol.28, 195–201.Google Scholar
  30. Van Harreveld, A., Trubatch, J., Steiner, J., 1974: Rapid freezing and electron microscopy for the arrest of physiological processes. J. Microsc.100, 189–198.Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Susan A. Lancelle
    • 1
  • D. A. Callaham
    • 1
  • P. K. Hepler
    • 1
  1. 1.Botany DepartmentUniversity of MassachusettsAmherstUSA

Personalised recommendations