Advertisement

Protoplasma

, Volume 91, Issue 1, pp 83–91 | Cite as

Tubuläre Einschlüsse in Microbodies vonSaccharomycopsis (Candida) lipolytica-Protoplasten

  • R. May
  • G. Barth
Kurze Mitteilung

Zusammenfassung

Auf Ultradünnschnitten Glutaraldehyd-OsO4 oder KMnO4 fixierterSaccharomycopsis lipolytica-Zellen, die in einem Medium mit Laktat als C-Quelle wuchsen, werden durchschnittlich 3–4 Anschnitte von Microbodies gefunden. Ihre Anzahl erhöht sich etwa um das Dreifache, wenn n-Hexadecan die C-Quelle ist.

Nach der Umwandlung der Zellen zu Protoplasten mit Hilfe von Enzymgemischen vonHelix pomatia enthalten die Microbodies tubuläre Einschlüsse. Diese Tubuli, deren äußerer Durchmesser etwa 25 nm beträgt, haben eine zentrale Verdichtung und erreichen Längen bis zu 0,8 μm. Sie sind in Bündeln oder Schichten angeordnet. Die Tubuli bilden sich möglicherweise durch Assemblierung von Enzymproteinen, wenn die Zellen während der Umwandlung zu Protoplasten mit hypertonischen Lösungen osmotisch geschockt werden.

Tubular inclusions within microbodies ofSaccharomycopsis (Candida) lipolytica-Protoplasts

Summary

Electron micrographs ofSaccharomycopsis lipolytica-cells grown in a medium with lactate as carbon source and fixed with glutaraldehyde-OsO4 or KmnO4 show 3–4 profiles of microbodies per section in average. The number of microbodies is about three times greater when cells are cultivated in a medium with n-hexadecane. The spherical to avoid microbodies (0.3–0,8 μm in diameter) have a homogeneous matrix.

After conversion of cells into protoplasts by the aid of snail gut juice tubular inclusions occur in microbodies. The single tubulus has an outer diameter of about 25 nm, a length up to 0.8 μm and contains a central rod. Several tubules form bundles or layers. It is suggested that the tubules could be enzyme protein assembling by osmotic shock with hypertonic solutions during preparation of protoplasts.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Avers, C. J., andM. Federman, 1968: The occurrence in yeast of cytoplasmic granules which resemble microbodies. J. Cell Biol.37, 555–559.Google Scholar
  2. —, 1971: Peroxisomes of yeast and other fungi. Sub-Cell. Biochem.1, 25–37.Google Scholar
  3. Breidenbach, R. W., A. Kahn, andH. Beevers, 1968: Characterization of glyoxysomes from castor bean endosperm. Plant Physiol.43, 705–713.Google Scholar
  4. Duve, C. de, andP. Baudhuin, 1966: Peroxisomes (microbodies and related particles). Physiol. Rev.46, 323–357.Google Scholar
  5. Frederick, S. E., E. H. Newcomb, E. L. Vigil, andW. P. Wergin, 1968: Fine-structural characterization of plant microbodies. Planta81, 229–252.Google Scholar
  6. Fukui, S., A. Tanaka, S. Kawamoto, S. Yasuhara, Y. Teranishi, andM. Osumi, 1975 a: Ultrastructure of methanol-utilizing yeast cells: appearance of microbodies in relation to high catalase activity. J. Bacteriol.123, 317–328.Google Scholar
  7. —,S. Kawamoto, S. Yasuhara, A. Tanaka, M. Osumi, andF. Imaizumi, 1975 b: Microbody of methanol-grown yeasts. Localization of catalase and flavin-dependent alcohol oxidase in the isolated microbody. Europ. J. Biochem.59, 561–566.Google Scholar
  8. Haggström, L., 1969: Studies on methanol-oxidizing bacteria. Biotechnol. Bioengineering11, 1043–1054.Google Scholar
  9. Hoffmann, H.-P., A. Szabo, andC. J. Avers, 1970: Cytochemical localization of catalase activity in yeast peroxisomes. J. Bacteriol.104, 581–584.Google Scholar
  10. Hruban, Z., andM. Rechcigl, 1969: Microbodies and related particles. New York-London: Academic Press.Google Scholar
  11. Künkel, W., 1976: Proteinkristalle und Tubuli-Bündel in Hefezellen. III. Identifizierung der Kristalle als Alkoholdehydrogenase (ADH). Z. allg. Mikrobiol.16, 187–196.Google Scholar
  12. Marquardt, H., 1962 a: Der Feinbau von Hefezellen im Elektronenmikroskop. I. Mitteilung:Rhodotorula rubra. Z. Naturforsch.17b, 42–48.Google Scholar
  13. —, 1962 b: Der Feinbau von Hefezellen im Elektronenmikroskop. II.Saccharomyces cerevisiae-Stämme. Z. Naturforsch.17b, 689–695.Google Scholar
  14. May, R., E. Unger, andCh. Strunk, 1972: Kernhüllenvesikeln und intranukleäre Lamellen bei Hefeprotoplasten. Protoplasma75, 195–198.Google Scholar
  15. —, 1973: Karyombildung in Hefeprotoplasten. Z. allg. Mikrobiol.13, 529–532.Google Scholar
  16. —, 1974: Licht- und elektronenmikroskopische Untersuchungen an Proteinkristallen und Mikrotubuli in Hefeprotoplasten. Z. allg. Mikrobiol.14, 409–418.Google Scholar
  17. —, undW. Künkel, 1975: Proteinkristalle und Tubuli-Bündel in Hefezellen. I. Assemblierung und Desassemblierung. Biochem. Physiol. Pflanzen167, 513–520.Google Scholar
  18. Ohnishi, T., K. Kawaguchi, andB. Hagihara, 1966: Preparation and some properties of yeast mitochondria. J. biol. Chemistry241, 1797–1806.Google Scholar
  19. Osumi, M., N. Miwa, Y. Teranishi, A. Tanaka, andS. Fukui, 1974: Ultrastructure ofCandida yeasts grown on n-alkanes. Appearance of microbodies and its relationship to high catalase activity. Arch. Microbiol.99, 181–201.Google Scholar
  20. —,F. Fukuzumi, Y. Teranishi, A. Tanaka, andS. Fukui, 1975 a: Development of microbodies inCandida tropicalis during incubation in a n-alkane medium. Arch. Microbiol.103, 1–11.Google Scholar
  21. —,F. Imaizumi, M. Imai, H. Sato, andH. Yamaguchi, 1975 b: Isolation and characterization of microbodies fromCandida tropicalis PK 233 cells grown on normal alkanes. J. gen. appl. Microbiol.21, 375–387.Google Scholar
  22. —,F. Imaizumi, andH. Sato, 1975 c: A new technique for the fixation of microbodies isolated fromCandida yeast cells grown on n-alkanes. Japan Women's University Journal22, 175–180.Google Scholar
  23. Parish, R. W., 1975: The isolation and characterization of peroxisomes (microbodies) from Baker's yeast,Saccharomyces cerevisia. Arch. Microbiol.105, 187–192.Google Scholar
  24. Perlman, Ph. S., andH. R. Mahler, 1970: Intracellular localization of enzymes in yeast. Arch. Biochem. Biophys.136, 245–259.Google Scholar
  25. Roggenkamp, R. H., M. Sahm, W. Winkelmann, andF. Wagner, 1975: Alcohol oxidase and catalase in peroxisomes of methanol-grownCandida boidinii. Europ. J. Biochem.59, 231–237.Google Scholar
  26. Sahm, H., R. Roggenkamp, F. Wagner, andW. Winkelmann, 1975: Microbodies in methanol-grownCandida boidinii. J. gen. Microbiol.88, 218–222.Google Scholar
  27. Szabo, A. S., andC. J. Avers, 1969: Some aspects of regulation of peroxisomes and mitochondria in yeast. Ann. New York Acad. Sci.168, 302–312.Google Scholar
  28. Tanaka, A., S. Yasuhara, S. Kawamoto, S. Fukui, andM. Osumi, 1976: Development of microbodies in the yeastKloeckera growing on methanol. J. Bacteriol.126, 919–927.Google Scholar
  29. Teranishi, Y., A. Tanaka, M. Osumi, andS. Fukui, 1974 a: Catalase activities of hydrocarbon-utilizingCandida yeasts. Agr. Biol. Chem.38, 1213–1220.Google Scholar
  30. —,S. Kawamoto, A. Tanaka, M. Osumi, andS. Fukui, 1974 b: Induction of catalase activity by hydrocarbons inCandida tropicalis PK 233. Agr. Biol. Chem.38, 1221–1225.Google Scholar
  31. Todd, M. M., andE. L. Vigil, 1972: Cytochemical localization of peroxidase activity inSaccharomyces cerevisiae. J. Histochem. Cytochem.20, 344–349.Google Scholar
  32. Tolbert, N. E., 1971: Microbodies-peroxisomes and glyoxysomes. Ann. Rev. Plant Physiol.22, 45–74.Google Scholar
  33. van Dijken, J. P., 1975: Microbodies in methanol-assimilating yeasts. Arch. Microbiol.102, 41–44.Google Scholar
  34. —,M. Veenhuis, C. A. Vermeulen, andW. Harder, 1975: Cytochemical localization of catalase activity in methanol-grownHansenula polymorpha. Arch. Microbiol.105, 261–267.Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • R. May
    • 1
  • G. Barth
    • 1
  1. 1.Forschungszentrum für Molekularbiologie und Medizin, Zentralinstitut für Mikrobiologie und experimentelle TherapieAkademie der Wissenschaften der Deutschen Demokratischen RepublikJena

Personalised recommendations