, Volume 202, Issue 3–4, pp 122–133 | Cite as

Iron-rich particles in embryos of seeds from the family Pinaceae

  • Daryl A. Reid
  • Heather C. Ducharme
  • M. Marcia West
  • John N. A. Lott
Original Papers


Iron-rich particles, previously reported in seeds of members of the genus Pinus, were found in radicle-hypocotyl tissues of dry embryos from eight other genera in the family Pinaceae. Thus, these Fe-rich particles are of common occurrence in seeds of this conifer family. These particles were most difficult to locate inPseudolarix amabilis, which has green embryos. Energy-dispersive X-ray analysis was used to determine the elements present in conifer Fe-rich particles and phytoferritin deposits in pea embryo axes. Ferich particles from all species studied contained mainly Fe and P but also contained considerable K and Mg. Abietoideae group I (genera Cedrus andAbies) had lower Fe ∶ P ratios compared to all the other combined subfamilies within the Pinaceae. Pea phytoferritin deposits contained markedly lower amounts of P relative to Fe based on peakto-background ratios and quantitative values calculated by using a ferric phosphate standard. We also found, for the first time, that pea phytoferritin contained considerable K. A strong similarity was found between the energy-dispersive X-ray analysis spectra from Ferich particles and portions of a laboratory-synthesized Fe, K, Mg phytate salt. Phytate is a common mineral-nutrient storage compound in seeds. The possibility of these Fe-rich particles being phytoferritin cannot be ruled out, but if they are phytoferritin, they have lower Fe ∶ P ratios than almost all other ferritins reported to date.


Embryo Energy-dispersive X-ray analysis Iron-rich particles Pinaceae Seeds 



energy-dispersive X-ray


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beecroft P, Lott JNA (1996) Changes in the element composition of globoids fromCucurbita maxima andCucurbita andreana cotyledons during early seedling growth. Can J Bot 74: 838–847Google Scholar
  2. Benharrat H, Thalouarn P, Renaudin S (1984) Mise en évidence par microscopie électronique et microanalyse de phytoferritine dans les amyloplastes d'une plante parasite,Osyris alba. Physiol Veg 22: 821–825Google Scholar
  3. Briat JF (1996) Roles of ferritin in plants. J Plant Nutr 19: 1331–1342Google Scholar
  4. Chandler JA (1977) X-ray microanalysis in the electron microscope. North-Holland, AmsterdamGoogle Scholar
  5. Farjon A (1990) Pinaceae. Koeltz, KönigsteinGoogle Scholar
  6. Huxley A, Griffiths M, Levy M (1992) The new Royal Horticultural Society dictionary of gardening. Macmillan, LondonGoogle Scholar
  7. Hyde BB, Hodge AJ, Kahn A, Birnstiel ML (1963) Studies on phytoferritin I: identification and localization. J Ultrastruct Res 9: 248–258Google Scholar
  8. Knoth R, Wrischer M, Vetter J (1980) Phytoferritin-accumulating plastids in the male generative cell ofPelargonium × hortorum Bailey. Z Pflanzenphysiol 98: 365–370Google Scholar
  9. Lane LC, Skopp RN (1986) A simple method for purifying phytoferritin. J Plant Nutr 9: 661–669Google Scholar
  10. Laulhère J-P, Labouré A-M, Van Wuytswinkel O, Gagnon J, Briat J-F (1992) Purification, characterization and function of bacterioferritin from the cyanobacteriumSynechocystis P.C.C. 6803. Biochem J 281: 785–793Google Scholar
  11. Lobreaux S, Briat J-F (1991) Ferritin accumulation and degradation in different organs of pea (Pisum sativum) during development. Biochem J 274: 601–606Google Scholar
  12. Lott JNA (1980) Protein bodies. In: Tolbert NE (ed) The biochemistry of plants: a comprehensive treatise, vol 1, the plant cell. Academic Press, New York, pp 589–623Google Scholar
  13. — (1981) Protein bodies in seeds. Nord J Bot 1: 421–432Google Scholar
  14. — (1984) Accumulation of seed reserves of phosphorus and other minerals. In: Murray DR (ed) Seed physiology, vol 1. Academic Press, Sydney, pp 139–166Google Scholar
  15. —, Goodchild DJ, Craig S (1984) Studies of mineral reserves in pea (Pisum sativum) cotyledons using low-water-content procedures. Aust J Plant Physiol 11: 459–469Google Scholar
  16. —, Greenwood JS, Batten G (1995) Mechanisms and regulation of mineral nutrient storage during seed development. In: Kigel J, Galili G (ed) Seed development and germination. Marcel Dekker, New York, pp 215–235Google Scholar
  17. Mann S, Bannister JV, Williams RJP (1986) Structure and composition of ferritin cores isolated from human spleen, limpet (Patella vulgata) hemolymph and bacterial (Pseudomonas aeruginosd) cells. J Mol Biol 188: 225–232Google Scholar
  18. —, Williams JM, Treffry A, Harrison PM (1987) Reconstituted and native iron-cores of bacterioferritin and ferritin. J Mol Biol 198: 405–416Google Scholar
  19. Marinos NG (1967) Multifunctional plastids in the meristematic region of potato tuber buds. J Ultrastruct Res 17: 91–113Google Scholar
  20. Perrin A (1970) Diversité des formes d'accumulation de la phytoferritine dans les cellules constituant l'epithème des hydathodes deTaraxacum officinale Weber etSaxifraga aizoon Jacq. Planta 93: 71–81Google Scholar
  21. Pittermann JM, West M, Lott JNA (1996) Characterization of globoids and iron-rich particles in cotyledons ofPinus banksiana seeds and seedlings. Can J For Res 26: 1697–1702Google Scholar
  22. Platt-Aloia KA, Thomson WW, Terry N (1983) Changes in plastid ultrastructure during iron nutrition-mediated chloroplast development. Protoplasma 114: 85–92Google Scholar
  23. Pueschel CM, Parthasarathy MV (1984) X-ray microanalysis of phytoferritin inConstantinea (Cryptonemiales, Rhodophyta). Phycologia 23: 465–469Google Scholar
  24. Ragland M, Briat J-F, Gagnon J, Laulhère J-P, Massenet O, Theil EC (1990) Evidence for conservation of ferritin sequences among plants and animals and for a transit peptide in soybean. J Biol Chem 265: 18339–18344Google Scholar
  25. Reichert RD, MacKenzie SL (1982) Composition of peas (Pisum sativum) varying widely in protein content. J Agric Food Chem 30: 312–317Google Scholar
  26. Robards AW, Humpherson PG (1967) Phytoferritin in plastids of the cambial zone of willow. Planta 76: 169–178Google Scholar
  27. —, Robinson CL (1968) Further studies on phytoferritin. Planta 82: 179–188Google Scholar
  28. Rohrer JS, Islam QT, Watt GD, Sayers DE, Theil EC (1990) Iron environment in ferritin with large amounts of phosphate, fromAzotobacter vinelandii and horse spleen, analyzed using extended x-ray absorption fine structure (EXAFS). Biochemistry 29: 259–264Google Scholar
  29. Russ JC (1972) Obtaining quantitative x-ray analytical results from thin sections in the electron microscope. In: Russ JC, Panessa BJ (eds) Thin-section microanalysis: proceedings of the Symposium of EDAX Laboratories, Raleigh, NC, November 8, 1972, pp 115–133Google Scholar
  30. Sczekan SR, Joshi JG (1989) Metal-binding properties of phytoferritin and synthetic iron cores. Biochim Biophys Acta 990: 8–14Google Scholar
  31. Seckbach J (1972a) Electron microscopical observations of leaf ferritin from iron-treatedXanthium plants: localization and diversity in the organelle. J Ultrastruct Res 39: 65–76Google Scholar
  32. — (1972b) Remarks on ferritin from iron loaded plants. Planta Med 21: 267–273Google Scholar
  33. Sheffield E, Bell PR (1978) Phytoferritin in the reproductive cells of a fern,Pteridium aquilinum (L.) Kuhn. Proc R Soc Lond B Biol Sci 202: 297–306Google Scholar
  34. Skilnyk HR, Lott JNA (1992) Mineral analyses of storage reserves ofCucurbita maxima andCucurbita andreana pollen. Can J Bot 70: 491–495Google Scholar
  35. Sprey B, Gliem G, Janossy AGS (1976) Iron containing inclusions in chloroplasts ofNicotiana clevelandii ×Nicotiana glutinosa I: X-ray microanalysis and ultrastructure. Z Pflanzenphysiol 79: 165–176Google Scholar
  36. — — — (1978) Iron and phosphorus containing inclusions in chloroplasts ofNicotiana clevelandii ×Nicotiana glutinosa. II: development of etioplasts to chloroplasts in cotyledons. Z Pflanzenphysiol 88: 69–82Google Scholar
  37. Steuer DA, Laetsch WM (1969) Chloroplast development inNicotiana tabacum “Maryland mammoth”. Am J Bot 56: 260–270Google Scholar
  38. Stewart A, Nield H, Lott JNA (1988) An investigation of the mineral content of barley grains and seedlings. Plant Physiol 86: 93–97Google Scholar
  39. Stewart WN (1983) Paleobotany and the evolution of plants. Cambridge University Press, CambridgeGoogle Scholar
  40. van der Mark F, de Lange T, Bienfait HF (1981) The role of ferritin in developing primary bean leaves under various conditions. Planta 153: 338–342Google Scholar
  41. —, van den Briel ML, van Oers JWAM, Bienfait HF (1982) Ferritin in bean leaves with constant and changing iron status. Planta 156: 341–344Google Scholar
  42. Wada T, Lott JNA (1997) Light and electron microscopic and energy dispersive x-ray microanalysis studies of globoids in protein bodies of embryo tissues and the aleurone layer of rice (Oryza saliva L.) grains. Can J Bot 75: 1137–1147Google Scholar
  43. Wade VJ, Treffry A, Laulhère J-P, Bauminger ER, Cleton MI, Mann S, Briat J-F, Harrison PM (1993) Structure and composition of ferritin cores from pea seed (Pisum sativum). Biochim Biophys Acta 1161: 91–96Google Scholar
  44. Waldo GS, Wright E, Whang Z-H, Briat J-F, Theil EC, Sayers DE (1995) Formation of the ferritin iron mineral occurs in plastids: an X-ray absorption spectroscopy study. Plant Physiol 109: 797–802Google Scholar
  45. West MM (1992) Elemental analysis and microscopical studies of the mature seeds of eleven species ofPinus. Master of Science thesis, McMaster University, Hamilton, Ont, CanadaGoogle Scholar
  46. —, Lott JNA (1993) Studies of mature seeds of elevenPinus species II: subcellular structure and localization of elements. Can J Bot 71: 577–585Google Scholar
  47. Zar JH (1984) Biostatistical analysis. Prentice-Hall, Englewood Cliffs, NJGoogle Scholar

Copyright information

© Springer-Verlag 1998

Authors and Affiliations

  • Daryl A. Reid
    • 1
  • Heather C. Ducharme
    • 1
  • M. Marcia West
    • 1
  • John N. A. Lott
    • 1
  1. 1.Department of BiologyMcMaster UniversityHamiltonCanada

Personalised recommendations