, Volume 191, Issue 3–4, pp 172–177 | Cite as

Microspectrofluorometry of the autofluorescent flagellum in phototactic brown algal zoids

  • Hiroshi Kawai
  • Shago Nakamura
  • Mamoru Mimuro
  • Masaki Furuya
  • Masakatsu Watanabe


Posterior flagella of zoids ofScytosiphon lomemaria andChorda filum (Phaeophyceae, Chromophyta) were isolated and subjected to microspectrofluorometry using a high sensitivity microspectrofluorometer in order to characterize the flagellar autofluorescent substances. Vigorous agitation in a Hypertonic medium yielded preparations of largely intact flagella retaining detectable green flagellar autofluorescence. Under 380–425 nm excitation light, maximum emission of flagellar autofluorescence was observed at 495 nm, whereas under 400–440 nm excitation light fluorescence shifted to around 510 nm. Comparison of these spectra with the fluorescence spectra of 4′,5′-cyclic FMN isolated from fertile thalli ofS. lomentaria, and of 6-carboxypterin suggested that two (or more) different fluorescent substances (presumably a flavin and a pterin) are present in the flagella.


Chorda filum Flagellar fluorescence Flavin Microspectrofluorometry Phototaxis Scytosiphon lomentaria 





flavin mononucleotide


N-[2-hydroxyethyl]piperazine-N′-[2-ethanesulfonic acid])


polyethylene glycol


paraflagellar body


tris(hydroxymethyl) aminomethane.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Auclair W, Siegel BW (1966) Cilia regeneration in the sea urchin embryo: evidence for a pool of ciliary proteins. Science 154: 913–915PubMedGoogle Scholar
  2. Benedetti PA, Checcucci A (1975) Paraflagellar body (PFB) pigments studied by fluorescence microscopy inEuglena gracilis. Plant Sci Lett 4: 47–51Google Scholar
  3. —, Lenci F (1977) In vivo microspectrofluorometry of photoreceptor pigments inEuglena gracilis. Photochem Photobiol 26: 315–318Google Scholar
  4. Brodhun B, Häder D-P (1990) Photoreceptor proteins and pigments in the paraflagellar body of the flagellateEuglena gracilis. Photochem Photobiol 51: 865–870Google Scholar
  5. Dodge JD (1973) The fine structure of algal cells. Academic Press, LondonGoogle Scholar
  6. Foster KW, Saranak J, Patel N, Zarilli G, Okabe M, Kline T, Nakanishi K (1984) A rhodopsin is the functional photoreceptor for phototaxis in the unicellular eukaryoteChlamydomonas. Nature 311: 756–759PubMedGoogle Scholar
  7. Galland P, Senger H (1988a) The role of flavins as photoreceptors. J Photochem Photobiol B 1: 277–294Google Scholar
  8. — — (1988b) The role of pterins in the photoreception and metabolism of plants. Photochem Photobiol 48: 811–820Google Scholar
  9. —, Keiner P, Dörnemann D, Senger H, Brodhun B, Häder D-P (1990) Pterin- and flavin-like fluorescence associated with isolated flagella ofEuglena. Photochem Photobiol 51: 675–680Google Scholar
  10. Ghetti F, Colombetti G, Lenci F, Campani E, Polacco E, Quaglia M (1985) Fluorescence ofEuglena gracilis photoreceptor pigment: an in vivo microspectrofluorometric study. Photochem Photobiol 42: 29–33Google Scholar
  11. Kawai H (1988) A flavin-like autofluorescent substance in the posterior flagellum of golden and brown algae. J Phycol 24: 114–117Google Scholar
  12. — (1992) Green flagellar autofluorescence in brown algal swarmers and their phototactic responses. Bot Mag Tokyo 105: 171–184Google Scholar
  13. —, Inouye I (1989) Flagellar autofluorescence in forty-four chlorophyllc-containing algae. Phycologia 28: 222–227Google Scholar
  14. —, Müller DG, Fölster E, Häder D-P (1990) Phototactic responses in the gametes of the brown alga,Ectocarpus siliculosus. Planta 182: 292–297Google Scholar
  15. —, Kubota M, Kondo T, Watanabe M (1991) Action spectra for phototaxis in zoospores of the brown algaPseudochorda gracilis. Protoplasma 161: 17–22Google Scholar
  16. Kreimer G (1994) Cell biology of phototaxis in flagellate algae. Int Rev Cytol 148: 229–310Google Scholar
  17. —, Kawai H, Müller DG, Melkonian M (1991) Reflective properties of the stigma in male gametes ofEctocarpus siliculosus (Phaeophyceae) studied by confocal laser scanning microscopy. J Phycol 27: 268–276Google Scholar
  18. Mimuro M, Yamazaki I, Itoh S, Tamai N, Satoh K (1988) Dynamic fluorescence properties of Di-D2-cytochrome b599 complex isolated from spinach chloroplasts: analysis by means of the timeresolved fluorescence spectra in picosecond time range. Biochim Biophys Acta 933: 478–486Google Scholar
  19. Moestrup Ø (1982) Flagellar structure in algae: a review, with new observations particularly on the Chrysophyceae, Phaeophyceae (Fucophyceae), Eustigmatophyceae andReckertia. Phycologia 21: 427–528Google Scholar
  20. Müller DG, Maier I, Müller H (1987) Flagellum autofluorescence and photoaccumulation in heterokont algae. Photochem Photobiol 46: 1003–1008Google Scholar
  21. Schmidt W, Galland P, Senger H, Furuya M (1990) Microspectrophotometry ofEuglena gracilis. Pterin- and flavin-like fluorescence in the paraflagellar body. Planta 182: 375–381Google Scholar
  22. Sineshchekov VA, Geiβ D, Sineshchekov OA, Galland P, Senger H (1994) Fluorometric characterization of pigments associated with isolated flagella ofEuglena gracilis: evidence for energy migration. J Photochem Photobiol 23: 225–237Google Scholar
  23. Watanabe M (1995) Action spectroscopy: photomovement and photomorphogenesis spectra. In: Hoospool W, Song P-S (eds) CRC handbook of organic photochemistry and photobiology. CRC Press, Boca Raton, pp 1260–1272Google Scholar
  24. Witman GB, Carlson K, Berliner J, Rosenbaum JL (1972)Chlamydomonas flagella. I. Isolation and electrophoretic analysis of microtubules, matrix, membranes, and mastigonemes. J Cell Biol 54: 507–539PubMedGoogle Scholar
  25. —, Pluramer J, Sander G (1978)Chlamydomonas flagellar mutants lacking radial spokes and central tubules. Structure, composition, and function of specific axonemal components. J Cell Biol 76: 729–747PubMedGoogle Scholar
  26. Yamano K, Saito H, Ogasawa Y, Fujii S, Yamada H, Shirahama H, Kawai H (1993) The autofluorescent substance in the posterior flagellum of swarmers of the brown algaScytosiphon lomentaria. A possible photoreceptive pigment in phototaxis. In: 35th Symposium on the chemistry of natural products, Kyoto, 1993, pp 646–653Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Hiroshi Kawai
    • 1
  • Shago Nakamura
    • 2
  • Mamoru Mimuro
    • 3
  • Masaki Furuya
    • 4
  • Masakatsu Watanabe
    • 3
  1. 1.Kobe University Research Center for Inland SeasKobeJapan
  2. 2.Department of Environmental Biology and Chemistry, Faculty of ScienceToyama UniversityToyama
  3. 3.National Institute for Basic BiologyOkazaki
  4. 4.Advanced Research LaboratoryHitachi Ltd.Saitama

Personalised recommendations