, Volume 118, Issue 3, pp 219–224 | Cite as

Occurrence of Phenylalanine Ammonia-Lyase (PAL) in isolated tapetum cells ofTulipa anthers

  • M. Rittscher
  • R. Wiermann


  1. 1.

    Cells and protoplasts were isolated from the tapetum in order to demonstrate the importance of this tissue in the phenylpropanoid metabolism of the anther loculus. It was our purpose to investigate the localization of the key phenylpropanoid enzyme, phenylalanine ammonia-lyase, within the tapetum and the other anther tissues.

  2. 2.

    The isolation of tapetum protoplasts proved to be possible only from tissue of the early developmental stage, and even then only with difficulties. It was not possible to obtain enough protoplasts for enzymatical studies. The cell walls of the tapetum from later developmental stages contain components which resist the attack of the hydrolytic enzymes.

  3. 3.

    Tapetum tissue, on the other hand, could be isolated in much greater quantities such that enzymatical studies were possible. Contamination of this isolated tissue with cells, protoplasts or traces of other anther tissues could not be detected.

  4. 4.

    The anther tapetum showed a very high specific PAL activity, whereas the pollen and other anther tissues contained only marginal activity. This result illustrates the dominant role of the tapetum in the anther phenylpropanoid metabolism.

  5. 5.

    IR-spectroscopy and acetolysis resistance revealed that sporopollenin is a building material of the newly formed tapetal and peritapetal cell walls.



Tapetum protoplasts Tapetum cells PAL activity Sporopollenin Tulipa cv Apeldoorn Liliaceae 



Phenylalanine ammonia-lyase


Morpholinoethanesulfonic acid


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahokas, H., 1975: Male sterile mutants of barley II. Cytochemistry of non-mutant and msg 6 cf microspores and pollen. Heriditas81, 33–46.Google Scholar
  2. Banerjee, U. C., 1967: Ultrastructure of the tapetal membrane of grasses. Grana Palynol.7, 365–377.Google Scholar
  3. Banerjee, U. E., Barghoorn, E. S., 1971: The tapetal membrane of grasses and Ubisch body control of mature exine pattern. In: Pollen: development and physiology (Heslof-Harrison, H., ed.), pp. 126–127. London: Butterworths.Google Scholar
  4. Bhandori, N. N., Kishori, R., 1973: Development of tapetal membrane and Ubisch granules inNigella damascena, a histochemical approach. Beitr. Biol. Pflanz.49, 59–72.Google Scholar
  5. Dickinson, H. G., 1970: The fine structure of a peritapetal membrane investing the microsporangium ofPinus banksiana. New Phytol.69, 1065–1068.Google Scholar
  6. Echlin, P., 1971: Production of sporopollenin by the tapetum. In: Sporopollenin (Brooks, J., Grant, P. R., Muire, M., van Gijel, P., Shaw, G., eds.), pp. 220–247. London-New York: Academic Press.Google Scholar
  7. Erdtman, G., 1960: The acetolysis method. A revised description. Sv. Bot. Tidskr.54, 561–564.Google Scholar
  8. Gupta, S. C.,Nanda, K., 1971: Membrane of anther tapetum in flowering plants. Proceedings of the 58th Indian Science Congress, Bangalore, Part III, pp. 499–500.Google Scholar
  9. — —, 1972: Occurrence and histochemistry of the anther tapetal membrane. Grana12, 99–104.Google Scholar
  10. Herdt, E., Sütfeld, R., Wiermann, R., 1978: The occurrence of enzymes involved in phenylpropanoid metabolism in the tapetum fraction of anthers. Cytobiologie17, 433–441.Google Scholar
  11. Heslop-Harrison, J., 1969: An acetolysis-resistant membrane investing tapetum and sporogenous tissue in the anthers of certainCompositae. Can. J. Bot.47, 541–542.Google Scholar
  12. —, 1975: The physiology of pollen grain surface. Proc. R. Soc. London B.190, 275–299.Google Scholar
  13. Kleinehollenhorst, G., Behrens, H., Pegels, G., Strunk, N., Wiermann, R., 1982: Formation of flavonol 3-O-diglycosides and flavonol 3-O-triglycosides by enzyme extracts from anthers ofTulipa cv. Apeldoorn. Characterization and activity of three different O-glycosyltransferases during anther development. Z. Naturforsch.37 c, 587–599.Google Scholar
  14. Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J., 1951: Protein measurement with the folin phenol reagent. J. biol. Chem.193, 265–275.Google Scholar
  15. Reznickova, S. A., Willemse, M. T. M., 1980: Formation of pollen in the anther ofLilium II. The function of the surrounding tissues in the formation of pollen and pollen wall. Acta bot. Neerl.29, 141–156.Google Scholar
  16. Sauter, J. J., 1969: Autoradiographische Untersuchungen zur RNS- und Proteinsynthese in Pollenmutterzellen, jungen Pollen und Tapetumzellen während der Microsporogenese vonPaeonia tenuifolia L. Z. Pflanzenphysiol.61, 1–19.Google Scholar
  17. Stanley, R. G., Linskens, H. F., 1974: Pollen, Biology, Biochemistry, Management. Berlin-Heidelberg-New York: Springer.Google Scholar
  18. Strack, D., Sachs, G., Wiermann, R., 1981: Pollen ofTulipa cv. Apeldoorn as an accumulation site of flavonol di- and triglycosides. Z. Pflanzenphysiol.103, 291–296.Google Scholar
  19. Sütfeld, R., Wiermann, R., 1974: Über die Bedeutung des Antherentapetums für die Akkumulation phenylpropanoider Verbindungen am Pollen. Ber. dtsch. bot. Ges.87, 167–174.Google Scholar
  20. —,Kehrel, B., Wiermann, R., 1978: Characterization, development and localization of “flavonone synthase” in tulip anthers. Z. Naturforsch.33 c, 841–846.Google Scholar
  21. Wiermann, R., 1979: Stage-specific phenylpropanoid metabolism during pollen development. In: Regulation of secondary product and plant hormone metabolism (Luckner, M., Schreiber, L., eds.), pp. 231–239. Oxford-New York: Pergamon.Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • M. Rittscher
    • 1
  • R. Wiermann
    • 1
  1. 1.Botanisches InstitutMünster (Westfalen)Germany

Personalised recommendations