, Volume 123, Issue 3, pp 184–191 | Cite as

An investigation of the role of transcellular ion currents in morphogenesis ofGriffithsia pacifica Kylin

  • Susan D. Waaland
  • William J. Lucas


Transcellular ion currents are thought to play a role in the induction and maintenance of localized growth in plant cells. In the marine red algaGriffithsia pacifica, two types of cells elongate by localized tip growth, rhizoidal and repair shoot cells. The pattern of growth and morphogenesis in these cells can be altered by environmental and hormonal parameters. We examined the role of localized currents in four developmental processes inG. pacifica: 1. normal elongation of rhizoids, 2. the phototropic response of rhizoids, 3. the re-initiation of growth in dark-starved rhizoids, and 4. morphogenesis of repair shoot cells in the presence and absence of rhodomorphin, an endogenous hormone which regulates growth of these cells.

We have found that there is a localized region of inflowing current at the growing tips of both rhizoids and repair shoot cells. The current density at these apices, measured approx. 20 μm from the cell surface, fluctuates in the range of 0.6 to 8 μA cm−2 with occasional periods of either very large current (> 20 μA cm−2) or no measurable current; however, the current density is not correlated with the rate of elongation. In addition, currents of similar magnitudes are found at the tips of non-growing cells. Rhizoids which have lost their cytoplasmic polarity and have stopped elongating, following prolonged periods in total darkness, can reestablish a polar distribution of organelles and restart localized growth in the absence of any measurable current at their tips. Thus, it appears that inG. pacifica localized transcellular currents are neither sufficient or necessary for the maintenance or reinitation of sites of localized growth and organelle accumulation.


Transcellular currents Tip growth-morphogenesis Griffithsia Red alga Vibrating probe 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Armbruster, B. L., Weisenseel, M. H., 1983: Ionic currents traverse growing hyphae and sporangia of the mycelial water moldAchlya debaryana. Protoplasma115, 65–69.Google Scholar
  2. Bartnicki-Garcia, S., 1973: Fundamental aspects of hyphal morphogenesis. Symp. Soc. Gen. Microbiol.23, 245–267.Google Scholar
  3. Blatt, M. R., Weisenseel, M. H., Haupt, W., 1981: A light-dependent current associated with chloroplast aggregation in the algaVaucheria sessilis. Planta152, 513–526.Google Scholar
  4. Gooday, G. W., Trinci, A. P. J., 1980: Wall structure and biosynthesis in fungi. Symp. Soc. Gen. Microbiol.30, 207–251.Google Scholar
  5. Green, P. B., 1969: Cell morphogenesis. Ann. Rev. Plant Physiol.20, 365–394.Google Scholar
  6. Harold, F. M., 1982: Pumps and currents: a biological perspective. Curr. Topics in Memb. and Transp.16, 485–516.Google Scholar
  7. Harold, R. L., Harold, F. M., 1980: Oriented growth ofBlastocladiella emersonii in gradients of ionophores and inhibitors. J. Bacteriol.144, 1159–1167.Google Scholar
  8. Herth, W., 1978: Ionophore A 23187 stops tip growth, but not cytoplasmic streaming, in pollen tubes ofLilium longiflorum. Protoplasma96, 275–282.Google Scholar
  9. Jaffe, L. A., Weisenseel, M. H., Jaffe, L. F., 1975: Calcium accumulations within the growing tips of pollen tubes. J. Cell Biol.67, 488–492.Google Scholar
  10. Jaffe, L. F., 1979: Control of development by ionic currents. In: Membrane transduction mechanisms (Cone, R. A., Dowling, J. E., eds.), pp. 119–231. New York: Raven Press.Google Scholar
  11. —,Nuccitelli, R., 1974: An ultrasensitive vibrating probe for measuring steady extracellular currents. J. Cell Biol.63, 614–628.Google Scholar
  12. —,Robinson, K. R., Nuccitelli, R., 1974: Local cation entry and self-electrophoresis as an intracellular localization mechanism. Ann. N. Y. Acad. Sci.238, 372–389.Google Scholar
  13. — — —, 1975: Calcium currents and gradients as localizing mechanisms. In: ICN-UCLA symposium on molecular and cellular biology, Vol. 2 (McMahon, D., Fox, F., eds.), pp. 135–147. Menlo Park, CA: W. A. Benjamin.Google Scholar
  14. Kropf, D. L., Lupa, M. D. A., Caldwell, J. H., Harold, F. M., 1983: Cell polarity: endogenous ion currents precede and predict branching in the water moldAchyla. Science220, 1385–1387.Google Scholar
  15. Lucas, W. J., 1982: Mechanism of acquisition of exogenous bicarbonate by internodal cells ofChara corallina. Planta156, 181–192.Google Scholar
  16. —,Nuccitelli, R., 1980: HCO3 and OH transport across the plasmalemma ofChara: Spatial resolution obtained using extracellular vibrating probe. Planta150, 120–131.Google Scholar
  17. Meindl, U., 1982: Local accumulation of membrane-associated calcium according to cell pattern formation inMicrasterias denticulata, visualized by chlorotetracycline fluorescence. Protoplasma110, 143–146.Google Scholar
  18. Mullins, J. T., 1979: A freeze-fracture study of hormone-induced branching in the fungusAchyla. Tissue Cell11, 585–595.Google Scholar
  19. Nuccitelli, R., 1978: Oöplasmic segregation and secretion in thePelvetia egg is accompanied by a membrane-generated electrical current. Devel. Biol.62, 13–33.Google Scholar
  20. —,Jaffe, L. F., 1974: Spontaneous current pulses through developing fucoid eggs. Proc. Nat. Acad. Sci. U.S.A.71, 4855–4859.Google Scholar
  21. Peng, H. B., Jaffe, L. F., 1976: Cell-wall formation inPelvetia embryos. A freeze-fracture study. Planta133, 57–71.Google Scholar
  22. Schröter, K., 1978: Asymetrical jelly secretion of zygotes ofPelvetia andFucus: an early polarization event. Planta140, 69–73.Google Scholar
  23. Sievers, A., Schnepf, E., 1981: Morphogenesis and polarity of tubular cells with tip growth. In: Cytomorphogenesis in plants (Kiermayer, O., ed.), pp. 265–299. Wien-New York: Springer.Google Scholar
  24. Waaland, S. D., 1975: Evidence for a species-specific cell fusion hormone in red algae. Protoplasma86, 253–261.Google Scholar
  25. —, 1983: Environmental control of rhizoid growth and ultrastructure inGriffithsia pacifica (Rhodophyta, Ceramiceae). J. Phycol.19 (Suppl.), 6.Google Scholar
  26. —,Cleland, R. E., 1974: Cell repair through cell fusion in the red algaGriffithsia pacifica. Protoplasma79, 185–196.Google Scholar
  27. —,Nehlsen, W., Waaland, J. R., 1977: Phototropism in a red algaGriffithsia pacifica. Plant Cell Physiol.18, 603–612.Google Scholar
  28. —,Waaland, J. R., Cleland, R., 1972: A new pattern of plant cell elongation: Bipolar band growth. J. Cell Biol.54, 184–190.Google Scholar
  29. —,Watson, B. A., 1980: Isolation of a cell-fusion hormone fromGriffithsia pacifica Kylin, a red alga. Planta149, 493–497.Google Scholar
  30. Watson, B. A., Waaland, S. D., 1983: Partial purification and characterization of a glycoprotein cell fusion hormone fromGriffithsia pacifica. Plant Physiol.71, 327–332.Google Scholar
  31. Weisenseel, M. H., Kicherer, R. M., 1981: Ionic currents as control mechanism in cytomorphogenesis. In: Cytomorphogenesis in plants (Kiermayer, O., ed.), pp. 379–399. Wien-New York: Springer.Google Scholar
  32. —,Nuccitelli, R., Jaffe, L. F., 1975: Large electrical currents traverse growing pollen tubes. J. Cell. Biol.66, 556–567.Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Susan D. Waaland
    • 1
  • William J. Lucas
    • 2
  1. 1.Department of BotanyUniversity of WashingtonSeattle
  2. 2.Department of BotanyUniversity of CaliforniaDavisUSA

Personalised recommendations