, Volume 137, Issue 2–3, pp 145–155 | Cite as

An ultrastructural study of the viscin tissue ofPhthirusa pyrifolia (H.B.K.) Eichler (Loranthaceae)

  • Esther Gedalovich
  • J. Kuijt


The viscin tissue ofPhthirusa pyrifolia consists at maturity of two different cell types. The first of these (viscin cells) are greatly elongated and have massive secondary walls, the microfibrils of which are arranged strictly transversely, and are soaked with mucilaginous noncellulosic polysaccharides. The second type of cells (vesicular cells) is much broader, with a very extensive vacuolar system and thin primary cell walls only. Viscin cells are capable of being stretched very greatly, the microfibrils of the secondary wall then becoming oriented more or less longitudinally. In nature, this corresponds to the time of attachement to the host surface, and is followed by drying and, possibly, shortening of the viscin cells. Developmental study of the tissue suggests that Golgi bodies are the major organelles participating in polysaccharide production. The actual mucilage seems to originate from three sources: an unorganized substance which accumulates between the plasmalemma and compound middle lamella; spherical vacuoles which seem to be embedded in the central vacuole, some of which are seen open to the outside of the cell; and from the dissolution at maturity of the compound middle lamella. It is suggested that the two types of cells may correspond to the two major functions of viscin, viz., host attachment (viscin cells) and nutrition of the disseminator (vesicular cells).


Mistletoe fruit Phthirusa pyrifolia Ultrastructure Development Viscin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Fincher GB, Stone BA (1981) Metabolism of noncellulosic polysaccharide. In:Tanner W, Loewus FA (eds) Plant carbohydrates II. Encyc plant physiol NS, vol 13 B. Springer, Berlin Heidelberg New York, pp 68–132Google Scholar
  2. Gedalovich E, Fahn A (1985) The development and ultrastructure of gum ducts inCitrus plants formed as a result of brown-rot gummosis. Protoplasma 127: 73–81Google Scholar
  3. Gill LS (1935)Arceuthobium in the United States. Conn Acad Arts and Sci Trans 32: 111–245Google Scholar
  4. Gjokič G (1896) Zur Anatomie der Frucht und des Samens vonViscum. Sitzungsber Akad Wiss Wien, math-nat Kl, Abt I, 105: 447–465Google Scholar
  5. Hayat MA (1981) Principles and techniques of electron microscopy: biological applications vol 1, 2nd ed. Aspen, Rockville Maryland, xii, 522 ppGoogle Scholar
  6. Heinricher E (1915) Beiträge zur Biologie der Zwergmistel,Arceuthobium oxycedri, besonders zur Kenntnis des anatomischen Baues und der Mechanik ihrer explosiven Beeren. Sitzungsber Akad Wiss Wien [math-nat Kl Abt I] 124: 184–230Google Scholar
  7. Iltis H (1911) Über das Vorkommen und die Entstehung des Kautschuks bei den Kautschukmisteln. Sitzungsber Kaiserl Akad Wiss Wien [math-nat Kl Abt I] 120: 1–48Google Scholar
  8. Jensen WA (1962) Botanical histochemistry. WH Freeman and Co, San Francisco London, vii, 408 ppGoogle Scholar
  9. Joel DM (1983) AGS (Alcian Green Safranin)-a simple differential staining of plant material for the light microscope. Proc R Microsc Soc 18: 149–151Google Scholar
  10. Kuijt J (1969) The biology of parasitic flowering plants. University of California Press, Berkeley Los Angeles, 246 ppGoogle Scholar
  11. Lüttge U, Schnepf E (1976) Organic substances. In:Lüttge U, Pitman MG (eds) Transport in plants II. Encyc plant physiol NS, vol 2 B. Springer, Berlin Heidelberg New York, pp 244–277Google Scholar
  12. MacDougal DT (1899) Seed dissemination and distribution ofRazoumofskya robusta (Engelm) Kuntze. Minn Bot Stud 2: 169–173Google Scholar
  13. Maltby D, Carpita NC, Montezinoz D, Kulow C, Delmer DP (1979) β-1,3-glucan in developing cotton fibers. Plant Physiol 63: 1158–1164Google Scholar
  14. Mollenhauer HH, Morré DJ (1966) Golgi apparatus and plant secretion. Ann Rev Plant Physiol 17: 27–46Google Scholar
  15. O'Brian TP, McCully ME (1981) The study of plant structure: principles and selected methods. Termarcarphi Pty Ltd, Melbourne, AustraliaGoogle Scholar
  16. Peirce GJ (1905) The dissemination and germination ofArceu- thobium occidentale Eng. Ann Bot 19: 99–113Google Scholar
  17. Restrepo C (1985) Aspectos ecológicos de la diseminación de cinco especies de muérdagos par aves. Thesis, Universidad del Valle, Cali, ColombiaGoogle Scholar
  18. Reynolds ES (1963) The use of lead citrate at high pH as an electron- opaque stain in electron microscopy. J Cell Biol 17: 208–212Google Scholar
  19. Robinson DG, Quader H (1982) The microtubule-microfibril syndrome. In:Lloyd CW (ed) The cytoskeleton in plant growth and development. Academic Press, London New York Paris, pp 110–126Google Scholar
  20. Roland JC (1978) General preparation and staining of thin sections. In:Hall JL (ed) Electron microscopy and cytochemistry of plant cells. Elsevier/North-Holland Biomedical Press, Amsterdam, pp 1–62Google Scholar
  21. Roth LF (1959) Natural emplacement of dwarfmistletoe seed on Ponderosa pine. For Sci 5: 365–369Google Scholar
  22. Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26: 31–43Google Scholar
  23. Sallé G (1983) Germination and establishment ofViscum album L. In:Calder M, Bernhardt P (eds) The biology of mistletoes. Academic Press, Sydney, pp 145–159Google Scholar
  24. Thiéry JP, Rambourg A (1974) Cytochemie des polysaccharides. J Microsc (Paris) 21: 225–232Google Scholar
  25. Tubeuf CF von (1923) Monographie der Mistel. Oldenbourg, Munich Berlin, xii, 832 ppGoogle Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Esther Gedalovich
    • 1
  • J. Kuijt
    • 1
  1. 1.Department of Biological SciencesThe University of LethbridgeLethbridgeCanada

Personalised recommendations