Advertisement

Protoplasma

, Volume 124, Issue 1–2, pp 137–146 | Cite as

Euglenoid movement inEuglena fusca: Evidence for sliding between pellicular strips

  • T. Suzaki
  • R. E. Williamson
Brief Report

Summary

InEuglena fusca, each pellicular strip carries a row of particles on its surface. The relative displacement of particles on adjacent strips was analysed by video-microscopy and evidence was obtained that adjacent pellicular strips slide relative to each other during euglenoid movement.E. fusca shows two types of euglenoid movement, oscillatory bending and rounding-up of the cell body. During oscillatory bending, the maximum velocity of sliding was 0.4 μm/s and the maximum displacement distance between adjacent strips 2.3 μm about their mean position. WhenE. fusca exhibited rounding-up of the cell body, particle displacement again occurred and the angle of the pellicular strips to the long axis of the cell body increased because of pellicular sliding. As a result the distance between the cell's anterior and posterior tips was reduced. There was no change in distance either between rows of particles or between particles within the same row. The findings are incompatible with theories of euglenoid movement requiring local contraction of pellicular strips and point to the likely existence of active sliding between adjacent strips.

Keywords

Euglena fusca Euglenoid movement Flagellate Microtubules Videomicroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnott, H. J., Smith, H. E., 1969: Analysis of microtubule structure inEuglena granulata. J. Phycol.5, 68–75.Google Scholar
  2. —,Walne, P. L., 1966: Metaboly inEuglena granulata. J. Phycol.2 (Suppl.), 4–5 (Abstr.).Google Scholar
  3. Bloodgood, R. A., Miller, K. R., 1974: Freeze-fracture of microtubules and bridges in motile axostyles. J. Cell Biol.62, 660–671.Google Scholar
  4. Bovee, E. C., 1982: Movement and locomotion ofEuglena. In: The biology ofEuglena, Vol. 3 (Buetow, D. E., ed.), pp. 143–168. New York: Academic Press.Google Scholar
  5. Bracher, R., 1938: The light relations ofEuglena limosa Grad.— Part I. The influence of intensity and quality of light on phototaxy. J. Linn. Soc. London, Bot.51, 23–43.Google Scholar
  6. Chen, Y. T., 1950: Investigations on the biology ofPeranema trichophorum (Eugleninae). Q. J. microsc. Sci.91, 279–308.Google Scholar
  7. Dasgupta, J., 1964: Submicroscopic morphology ofEuglena gracilis Klebs. Ann. Sci. Nat. Zool. Biol. Anim.6, 215–227.Google Scholar
  8. Diskus, A., 1956: Färbestudien an den Schleimkörperchen und Schleimausscheidungen einiger Euglenen. Protoplasma45, 460–477.Google Scholar
  9. Gallo, J.-M., Schrevel, J., 1982: Euglenoid movement inDistigma proteus. I. Cortical rotational motion. Biol. Cell44, 139–148.Google Scholar
  10. Häder, D.-P., Melkonian, M., 1983: Phototaxis in the gliding flagellate,Euglena mutabilis. Arch. Microbiol.135, 25–29.Google Scholar
  11. Hall, S. R., 1931: Obervations onEuglena leucops, sp. nov., a parasite ofStenostomum, with special reference to nuclear division. Biol. Bull. (Woods Hole, Mass.)60, 327–344.Google Scholar
  12. Harris, J., 1969: Microscopical observations of vast numbers of animalcules seen in water. Philos. Trans. R. Soc. London Ser. B19, 254–259.Google Scholar
  13. Hilmbauer, K., 1954: Zellphysiologische Studien an Euglenaceen, besonders anTrachelomonas. Protoplasma43, 192–227.Google Scholar
  14. Hofmann, C., Bouck, B., 1976: Immunological and structural evidence for patterned intussusceptive surface growth in a unicellular organism. A postulated role for submembranous proteins and microtubules. J. Cell Biol.69, 693–715.Google Scholar
  15. Huxtable, D. M., Hyams, J. S., 1982: Euglenoid movement characterized by video light microscopy inEuglena gracilis. Brit. J. Phycol.17, 234 (Abstr.).Google Scholar
  16. Jahn, T. L., Bovee, E. C., 1964: Protoplasmic movements and locomotion of protozoa. In: Biochemistry and physiology of protozoa, Vol. 3 (Hutner, S. H., ed.), pp. 61–129. New York: Academic Press.Google Scholar
  17. Khawkine, W., 1887: Biology ofAstasia ocellata andEuglena viridis. J. Roy. Microsc. Soc. Ser. II.7, 601–602.Google Scholar
  18. Leedale, G. F., 1964: Pellicle structure inEuglena. Brit. phycol. Bull.2, 291–306.Google Scholar
  19. —, 1966:Euglena: A new look with the electron microscope. Adv. Sci.23, 22–37.Google Scholar
  20. —, 1982: Ultrastructure. In: The biology ofEuglena, Vol. 3 (Buetow, D. E., ed.), pp. 1–27. New York: Academic Press.Google Scholar
  21. —,Meeuse, B. J. D., Pringsheim, E. G., 1965: Structure and physiology ofEuglena spirogyra. I and II. Arch. Mikrobiol.50, 68–102.Google Scholar
  22. Lowndes, A. G., 1936: Flagella movement. Nature (Lond.)138, 210–211.Google Scholar
  23. Mackinnon, D. L., Hawes, R. S. J., 1961: An introduction to the study of protozoa, pp. 69–87. London: Oxford Univ. Press.Google Scholar
  24. Mikolajczyk, E., 1972: Pattern of body movements ofEuglena gracilis. Acta Protozool.11, 317–324.Google Scholar
  25. —, 1973: Effects of some chemical factors on the euglenoid movement inEuglena gracilis. Acta Protozool.12, 133–142.Google Scholar
  26. Mikolajczyk, E., 1975: The biology ofEuglena ehrenbergii Klebs. I. Fine structure of pellicular complex and its relation to euglenoid movements. Acta Protozool.14, 233–240.Google Scholar
  27. —,Kuznicki, L., 1981: Body contraction and ultrastructure ofEuglena. Acta Protozool.20, 1–24.Google Scholar
  28. Pringsheim, E. G., 1946: The biphasic or soil-water culture method for growing algae and flagellata. J. Ecol.33, 193–204.Google Scholar
  29. —, 1948: Taxonomic problems inEuglenineae. Biol. Rev. Cambridge Philos. Soc.23, 46–61.Google Scholar
  30. Reynolds, E. S., 1963: The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol.17, 208–212.Google Scholar
  31. Schwelitz, F. D., Evans, W. R., Mollenhauer, H. H., Dilley, R. A., 1970: The fine structure of the pellicle ofEuglena gracilis as revealed by freeze-etching. Protoplasma69, 341–349.Google Scholar
  32. Spurr, A. R., 1969: A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res.26, 31–43.Google Scholar
  33. Suzaki, T., Toyohara, A., Watanabe, S., Shigenaka, Y., Sakai, H., 1980: Microtubules in protozoan cells. Continuous transition between microtubules and macrotubules revealed by a newly devised isolation technique. Biomed. Res.1, 207–215.Google Scholar
  34. Tanenbaum, S. W., 1978: Cytochalasins: Biochemical and cell biological aspects. In: Frontiers of biology, Vol. 46. Amsterdam-New York: North-Holland.Google Scholar
  35. Warner, F. D., 1978: Cation-induced attachment of ciliary dynein cross-bridges. J. Cell Biol.77, R19-R26.Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • T. Suzaki
    • 1
  • R. E. Williamson
    • 1
  1. 1.Department of Developmental Biology, Research School of Biological SciencesThe Australian National UniversityCanberra CityAustralia

Personalised recommendations