, Volume 71, Issue 4, pp 419–442 | Cite as

The coelomic elements of sea urchins (Strongylocentrotus)

IV. Ultrastructure of the coelomocytes
  • Paul K. Chien
  • Phyllis T. Johnson
  • Nicholas D. Holland
  • Faylla A. Chapman


The four coelomocyte classes of the red sea urchin,Strongylocentrotus franciscanus, described by light-microscope studies, are confirmed and the fine structure described. Material examined included fresh, non-aggregated cells; partially aggregated ones that had been heldin vitro up to four days; and aggregated cells heldin vitro for 40 days. Leukocytes from youngin-vitro preparations differed from most fresh leukocytes by having enlarged dense nucleoli and enlarged rough endoplasmic reticulum, which was often filled with secretion, and sometimes connected to the perinuclear cisterna. Leukocytes held 40 daysin vitro were mainly plasmodial. Unlike cells held a limited timein vitro, the 40-day leukocytes had nuclei much like those in fresh preparations.

The three classes of spherule-bearing cells (vibratile cells, red spherule cells, and colorless spherule cells) differed greatly in ultrastructure, and varied in appearance according to the fixative and pH present during fixation. Vibratile-cell spherules were of biphasic construction, suggesting the condition of certain vertebrate mast cells. Red spherule cells occurred in two forms. The most common form in fresh preparations had “despherulated”,i.e., lacked material in the spherules; and the spherules of the second type were filled with either granular or homogeneous material. Colorless spherule cells had evenly and finely granular material in the spherules. Colorless spherule cells were uncommon or missing in material that had been heldin vitro. Certain unidentifiable spherule cells occurred in some preparations.

Although samples are small, it is notable that in May and June, recognizable glycogen was present only in leukocytes that had been heldin vitro, not in any fresh cells. Glycogen occurred in fresh cells of all classes from samples taken in December and February (during or shortly before the normal spawning season ofS. franciscanus). Unlike the cells in fresh preparations made in May, June, and December, fresh leukocytes and vibratile cells taken in February often had extremely lobed nuclei and considerably developed rough endoplasmic reticulum.


Endoplasmic Reticulum Mast Cell Fine Structure Granular Material Rough Endoplasmic Reticulum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrew, W., 1962: Studies by electron microscopy and phase microscopy on the leucocytes and spherule cells of echinoderms and a comparison of these cells with the blood of tunicates. Anat. Rec.142, 209–210.Google Scholar
  2. —, 1965: Comparative hematology. New York: Grune and Stratton.Google Scholar
  3. Barra, J. A., 1969: Tégument des Collemboles. Présence d'hémocytes à granules dans le liquide exuvial au cours de la mue (Insectes, Collemboles). C. R. Acad. Sci., Sér. D,269, 902–903.Google Scholar
  4. Boolootian, R. A., andR. Lasker, 1964: Digestion of brown algae and the distribution of nutrients in the purple sea urchinStrongylocentrotus purpuratus. Comp. Biochem. Physiol.11, 273–289.PubMedGoogle Scholar
  5. Clifford, C. H., 1969: Morphological and biochemical features of the coelomocytes of the sea cucumber,Molpadia arenicola (Echinodermata: Holothuroidea). Master's Thesis, Scripps Institution of Oceanography, University of California, San Diego.Google Scholar
  6. Csaba, G., andI. Oláh, 1968: Mechanism of the formation of mast cell granules: I. Ultra-structural and histochemical study in a model consisting of living cells. Acta Biol. Acad. Sci. Hung.19, 347–362.PubMedGoogle Scholar
  7. Dhainaut, A., 1969: Étude ultrastructurale des cellules sanguines deNereis diversicolor O. F. Muller (Annélide Polychète). C. R. Acad. Sci., Sér. D,268, 711–712.Google Scholar
  8. Doyle, W. L., andG. F. McNiell, 1964: The fine structure of the respiratory tree inCucumaria. Quart. J. micr. Sci.105, 7–11.Google Scholar
  9. Dudley, P. L., 1968: A light and electron microscopic study of tissue interactions between a parasitic copepod,Scolecodes buntsmani (Henderson), and its host ascidian,Styela gibbsii. J. Morph.124, 263–282.PubMedGoogle Scholar
  10. Dumont, J. N., E. Anderson, andG. Winner, 1966: Some cytologic characteristics of the hemocytes ofLimulus during clotting. J. Morph.119, 181–208.PubMedGoogle Scholar
  11. Granados, R. R., L. S. Ward, andK. Maramorosch, 1968: Insect viremia caused by a plant-pathogenic virus: Electron microscopy of vector hemocytes. Virology34, 790–796.PubMedGoogle Scholar
  12. Grimstone, A. V., S. Rotheram, andG. Salt, 1967: An electron-microscope study of capsule formation by insect blood cells. J. Cell Sci.2, 281–291.PubMedGoogle Scholar
  13. Gupta, A. P., andD. J. Sutherland, 1967: Phase contrast and histochemical studies of spherule cells in cockroaches (Dictyoptera). Ann. Ent. Soc. Am.60, 557–565.Google Scholar
  14. Harpaz, I., N. Kislev, andA. Zelcer, 1969: Electron-microscopic studies on hemocytes of the Egyptian cottonworm,Spodoptera littoralis (Boisduval) infected with a nuclear-polyhedrosis virus as compared to noninfected hemocytes. I. Noninfected hemocytes. J. Invert. Pathol.14, 175–185.Google Scholar
  15. Hearing, V., andS. H. Vernick, 1967: Fine structure of the blood cells of the lobster,Homarus americanus. Chesapeake Sci.8, 170–186.Google Scholar
  16. Hoffmann, J. A., 1966: Étude ultrastructurale de deux hémocytes deLocusta migratoria (Orthoptère). C. R. Acad. Sci.263, 521–524.Google Scholar
  17. —,M.-E. Stoekel, A. Porte etP. Joly, 1968: Ultrastructure des hémocytes deLocusta migratoria (Orthoptère). C. R. Acad. Sci., Sér. D,266, 503–505.Google Scholar
  18. Holland, N. D., J. H. Phillips, Jr., andA. C. Giese, 1965: An autoradiographic investigation of coelomocyte production in the purple sea urchin (Strongylocentrotus purpuratus). Biol. Bull.128, 259–270.Google Scholar
  19. Holmes, K. V., andP. W. Choppin, 1968: On the role of microtubules in movement and alignment of nuclei in virus-induced syncytia. J. Cell Biol.39, 526–543.Google Scholar
  20. Johnson, P. T., 1969 a: The coelomic elements of sea urchins (Strongylocentrotus). I. The normal coelomocytes; their morphology and dynamics in hanging drops. J. Invert. Pathol.13, 25–41.Google Scholar
  21. —, 1969 b: The coelomic elements of sea urchins (Strongylocentrotus). II. Cytochemistry of the coelomocytes. Histochemie17, 213–231.PubMedGoogle Scholar
  22. —, 1969 c: The coelomic elements of sea urchins (Strongylocentrotus). III.In vitro reaction to bacteria. J. Invert. Pathol.13, 42–62.Google Scholar
  23. - 1970: The coelomic elements of sea urchins (Strongylocentrotus andCentrostephanus). VI. Cellulose-acetate membrane electrophoresis. Comp. Biochem. Physiol., in press.Google Scholar
  24. —, andR. J. Beeson, 1966:In vitro studies onPatiria miniata (Brandt) coelomocytes, with remarks on revolving cysts. Life Sci.5, 1641–1666.PubMedGoogle Scholar
  25. —, andF. A. Chapman, 1970: Infection with diatoms and other microorganisms in sea-urchin spines (Strongylocentrotus franciscanus). J. Invert. Pathol.16, 268–276.Google Scholar
  26. Johnson, P. T., P. K.Chien, and F. A.Chapman, 1971: The coelomic elements of sea urchins (Strongylocentrotus). V. Ultrastructure of leukocytes exposed to bacteria. J. Invert. Pathol., in press.Google Scholar
  27. Kalk, M., 1963 a: Intracellular sites of activity in the histogenesis of tunicate vanadocytes. Quart. J. micr. Sci.104, 483–494.Google Scholar
  28. —, 1963 b: Cytoplasmic transmission of a vanadium compound in a tunicate oocyte, visible with electronmicroscopy. Acta Embryol. Morphol. Exp.6, 289–303.Google Scholar
  29. Karnovsky, M. J., 1961: Simple methods for “staining with lead” at high pH in electron microscopy. J. biophys. biochem. Cytol.11, 729–732.PubMedGoogle Scholar
  30. Kindred, J. E., 1924: The cellular elements in the perivisceral fluid of echinoderms. Biol. Bull.46, 228–251.Google Scholar
  31. Kislev, N., I. Harpaz, andA. Zelcer, 1969: Electron-microscopic studies on hemocytes of the Egyptian cottonworm,Spodoptera littoralis (Boisduval) infected with a nuclear-polyhedrosis virus, as compared to noninfected hemocytes. II. Infected hemocytes. J. Invert. Pathol.14, 245–257.Google Scholar
  32. Kobayasi, T., K. Mitgård, andG. Asboe-Hansen, 1968: Ultrastructure of human mast-cell granules. J. Ultrastruct. Res.23, 153–165.PubMedGoogle Scholar
  33. Kuhl, W., 1965: Das Bewegungsverhalten der Coelomzellen vonPsammechinus miliaris bei der Wundheilung (Echinodermata). Helgolander Wiss. Meeresuntersuch.12, 424–443.Google Scholar
  34. Lai-Fook, J., 1968: The fine structure of wound repair in an insect (Rhodnius prolixus). J. Morph.124, 37–78.PubMedGoogle Scholar
  35. Marschall, K. J., 1966: Bau und Funktionen der Blutzellen des MehlkäfersTenebrio molitor L. Z. Morph. Oekol. Tiere58, 182–246.Google Scholar
  36. Nakahara, H., andG. Bevelander, 1969: An electron microscope study of ingestion of thorotrast by amoebocytes ofPinctada radiata. Texas Repts. Biol. Med.27, 101–109.Google Scholar
  37. Overton, J., 1966: The fine structure of blood cells in the ascidianPerophora viridis. J. Morph.119, 305–326.PubMedGoogle Scholar
  38. Pequignat, E., 1966 a: “Skin digestion” and epidermal absorption in irregular and regular urchins and their probable relation to the outflow of spherule-coelomocytes. Nature210, 397–399.Google Scholar
  39. —, 1966 b: Observations comparées sur les caractères et le comportement des cellules mobiles dans le sang et les tissus dePsammechinus miliaris et d'Echinocardium cordatum. Role du tissu hémal. Bull. Soc. Linnéenne de Normandie (Sér. 10)7, 222–238.Google Scholar
  40. Poinar, G. O., R. Leutenegger, andP. Götz, 1968: Ultrastructure of the formation of a melanotic capsule inDiabrotica (Coleoptera) in response to a parasitic nematode (Mermithidae). J. Ultrastruct. Res.25, 293–306.PubMedGoogle Scholar
  41. Rambourg, A., 1967: An improved silver methenamine technique for the detection of periodic acid-reactive complex carbohydrates with electron microscope. J. Histochem. Cytochem.15, 409–412.PubMedGoogle Scholar
  42. Reynolds, E. S., 1963: The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol.17, 208–213.PubMedGoogle Scholar
  43. Rifkin, E., T. C. Cheng, andH. R. Hohl, 1969: An electron-microscope study of the constituents of encapsulating cysts in the American oyster,Crassostrea virginica, formed in response toTylocephalum metacestodes. J. Invert. Pathol.14, 211–226.Google Scholar
  44. Rizki, T. M., 1968: Hemocyte encapsulation of streptococci inDrosophila. J. Invert. Pathol.12, 339–343.Google Scholar
  45. Selye, H., 1965: The mast cells. Washington: Butterworths.Google Scholar
  46. Sichel, G., 1964: Richerche sui celomociti dei Policheti: Nota IV. Osservazioni sull'ultra-struttura dei celomociti dePerinereis cultrifera (Grube). Boll. Sedute Accad. Gioenia Sci. Natur. Catania8, 86–93.Google Scholar
  47. Stang-Voss, C., 1970 a: Zur Ultrastruktur der Blutzellen wirbelloser Tiere. I. Über die Hämocyten der Larve des MehlkäfersTenebrio molitor L. Z. Zell. Mikr. Anat.103, 589–605.Google Scholar
  48. —, 1970 b: Zur Ultrastruktur der Blutzellen wirbelloser Tiere. II. Über die Blutzellen vonGolfingia gouldi (Sipunculidae). Z. Zell. Mikr. Anat.106, 200–208.Google Scholar
  49. —, 1970 c: Zur Ultrastruktur der Blutzellen wirbelloser Tiere. III. Über die Hämocyten der SchneckeLymnaea stagnalis L. (Pulmonata). Z. Zell. Mikr. Anat.107, 142–156.Google Scholar
  50. Venable, J. H., andR. Coggeschall, 1965: A simplified lead citrate stain for use in electron microscopy. J. Cell Biol.25, 407–408.PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • Paul K. Chien
    • 1
    • 2
  • Phyllis T. Johnson
    • 1
    • 2
  • Nicholas D. Holland
    • 1
    • 3
    • 2
  • Faylla A. Chapman
    • 1
    • 2
  1. 1.Center for PathobiologyUniversity of CaliforniaIrvineUSA
  2. 2.W. M. Keck Engineering LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  3. 3.Division of Marine Biology Scripps Institution of OceanographyUniversity of CaliforniaSan Diego, La Jolla

Personalised recommendations