, Volume 203, Issue 3–4, pp 153–167 | Cite as

Virus assembly inHincksia hincksiae (Ectocarpales, Phaeophyceae) An electron and fluorescence microscopic study

  • Susanne Wolf
  • I. Maier
  • C. Katsaros
  • D. G. Müller


The filamentous brown algaHincksia hincksiae can be infected by a large icosahedral double-stranded DNA virus (HincV-1). The virus shows extended latency and is replicated only in cells homologous to sporangia. Virus formation was studied by transmission electron microscopy, DAPI staining, and β-tubulin immunofluorescence. Inhibition of cytokineses results in multinucleate cells, which are the first indication of virus replication in productive cells; the microtubular cytoskeleton does not seem to be affected by the virus. Replication of viral DNA begins in the nuclei, which increase in size and eventually disintegrate. Virus assembly takes place in a mixed nucleo-/cytoplasm. Capsids bud from cisternae, which are interpreted as modified endoplasmic reticulum aggregated to virus assembly centres. The internal membranous component of the virus is thus derived from the endoplasmic reticulum. The particles are empty (electron translucent) when assembled, and the nucleoprotein core seems to be packaged subsequently through an opening in the capsid. A number of fine structural features not previously reported from brown algae and related to virus formation are described. Our results on Hincksia hincksiae virus are compared with observations made on various other icosahedral DNA viruses infecting eukaryotic algae and animals.


Algae Virus assembly DAPI staining Electron microscopy Hincksia hincksiae Immunofluorescence Marine double-stranded DNA virus 



African swine fever virus


bovine serum albumin




double-stranded DNA


ethyleneglycol-bis-(b-amino-ethyl ether)-N,N′-tetraacetic acid


endoplasmic reticulum


frog virus 3


N-2-hydroxyethylpiperazine-N′-2-ethane sulfonic acid


Hincksia hincksiae virus type 1


Paramecium bursaria Chlorella virus 1


phosphate-buffered saline


rough endoplasmic reticulum


Tris-buffered saline Tris tris-(hydroxymethyl)-aminomethane


virus assembly centre


virus-like particle


virus-producing cell


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ardré F (1969) Contribution à l'étude des algues marines du Portugal 1. La Flore. Port Acta Biol 10B: 137–555Google Scholar
  2. Arzuza O, Urzainqui A, Díaz-Ruiz JR, Tabarés E (1992) Morphogenesis of African swine fever virus in monkey kidney cells after reversible inhibition of replication by cycloheximide. Arch Virol 124: 343–354Google Scholar
  3. Brookes SM, Dixon LK, Parkhouse RME (1996) Assembly of African swine fever virus: quantitative ultrastructural analysis in vitro and in vivo. Virology 224: 84–92Google Scholar
  4. Cardinal A (1964) Étude sur les ectocarpacées de la Manche. Beih Nova Hedw 15: 1–86Google Scholar
  5. Chen F, Suttle CA (1996) Evolutionary relationships among large double-stranded DNA viruses that infect microalgae and other organisms as inferred from DNA polymerase genes. Virology 219: 170–178Google Scholar
  6. Clitheroe SB, Evans LV (1974) Viruslike particles in the brown algaEctocarpus. J Ultrastruct Res 49: 211–217Google Scholar
  7. Cobbold C, Whittle JT, Wileman T (1996) Involvement of the endoplasmic reticulum in the assembly and envelopment of African swine fever virus. J Virol 70: 8382–8390Google Scholar
  8. Devauchelle G, Stoltz DB, Darcy-Tripier F (1985) Comparative ultrastructure of Iridoviridae. Curr Top Microbiol Immunol 116: 1–21Google Scholar
  9. García-Beato R, Salas ML, Viñuela E, Salas J (1992) Role of the host cell nucleus in the replication of African swine fever virus DNA. Virology 188: 637–649Google Scholar
  10. Goorha R (1982) Frog virus 3 DNA replication occurs in two stages. J Virol 43: 519–528Google Scholar
  11. Henry EC, Meints RH (1992) A persistent virus infection inFeldmannia (Phaeophyceae). J Phycol 28: 517–526Google Scholar
  12. Hess RT, Poinar GO Jr (1985) Iridoviruses infecting terrestrial isopods and nematodes. Curr Top Microbiol Immunol 116: 49–76Google Scholar
  13. Hoffman LR (1978) Virus-like particles inHydrurus (Chrysophyceae). J Phycol 14: 110–114Google Scholar
  14. —, Stanker LH (1976) Virus-like particles in the green algaCylindrocapsa. Can J Bot 54: 2827–2841Google Scholar
  15. Kapp M, Knippers R, Müller DG (1997) New members of a group of DNA viruses infecting brown algae. Phycol Res 45: 85–90Google Scholar
  16. Kelly DC, Vance DF (1973) The lipid content of two iridescent viruses. J Gen Virol 21: 417–423Google Scholar
  17. Lee RE (1971) Systemic viral material in the cells of the freshwater red algaSirodotia tenuissima (Holden) Skuja. J Cell Sci 8: 623–631Google Scholar
  18. Maier I, Rometsch E, Wolf S, Kapp M, Müller DG, Kawai H (1997) Passage of a marine brown algal DNA virus fromEctocarpus fasciculatus (Ectocarpales, Phaeophyceae) toMyriotrichia clavaeformis (Dictyosiphonales, Phaeophyceae): infection symptoms and recovery. J Phycol 33: 838–844Google Scholar
  19. - Wolf S, Delaroque N, Müller DG (1998) A DNA virus infecting the marine brown algaPilayella littoralis (Ectocarpales, Phaeophyceae) in culture. Eur J Phycol 33 (in press)Google Scholar
  20. Markey DR (1974) A possible virus infection in the brown algaPylaiella littoralis. Protoplasma 80: 223–232Google Scholar
  21. Meints RH, Lee K, Van Etten JL (1986) Assembly site of the virus PBCV-1 in a Chlorella-like green alga: ultrastructural studies. Virology 154: 240–245Google Scholar
  22. Melkonian M (1982) Virus-like particles in the scaly green flagellateMesostigma viride. Br Phycol J 17: 63–68Google Scholar
  23. Müller DG, Kawai H, Stache B, Lanka S (1990) A viras infection in the marine brown algaEctocarpus siliculosus (Phaeophyceae). Bot Acta 103: 72–82Google Scholar
  24. —, Kapp M, Knippers R (1998) Viruses in marine brown algae. Adv Virus Res 50: 49–67Google Scholar
  25. Murphy FA, Fauquet CM, Bishop DHL, Ghabrial SA, Jarvis AW, Martelli GP, Mayo MA, Summers MD (eds) (1995) Virus taxonomy. Springer, Wien New YorkGoogle Scholar
  26. Nagasaki K, Ando M, Imai I, Itakura S, Ishida Y (1994) Virus-like particles inHeterosigma akashiwo (Raphidophyceae): a possible red tide disintegration mechanism. Mar Biol 119: 307–312Google Scholar
  27. Oliveira L, Bisalputra T (1978) A virus infection in the brown algaSorocarpus uvaeformis (Lyngbye) Pringsheim (Phaeophyta, Ectocarpales). Ann Bot 42: 439–445Google Scholar
  28. Parodi ER, Müller DG (1994) Field and culture studies on virus infections inHincksia hincksiae andEctocarpus fasciculatus (Ectocarpales, Phaeophyceae). Eur J Phycol 29: 113–117Google Scholar
  29. Provasoli L (1968) Media and prospects for the cultivation of marine algae. In: Watanabe A, Hattori A (eds) Cultures and collections of algae: Proceedings of the U.S.-Japan Conference 1966, Hakone. Japanese Society for Plant Physiology, pp 63–75Google Scholar
  30. Reisser W (1993) Viruses and virus-like particles of freshwater and marine eukaryotic algae: a review. Arch Protistenk 143: 257–265Google Scholar
  31. —, (1995) Phycovirology: aspects and prospect of a new phycological discipline. In: Wiessner W, Schnepf E, Starr RC (eds) Algae, environment and human affairs. Biopress, Bristol, pp 143–158Google Scholar
  32. Sicko-Goad L, Walker G (1979) Viroplasm and large virus-like particles in the dinoflagellateGymnodinium uberrimum. Protoplasma 99: 203–210Google Scholar
  33. Van Etten JL (1995) Giant Chlorella viruses. Mol Cells 5: 99–106Google Scholar
  34. —, Lane LC, Meints RH (1991) Viruses and viruslike particles of eukaryotic algae. Microbiol Rev 55: 586–620Google Scholar
  35. Venable JH, Coggeshall R (1965) A simplified lead citrate stain for use in electron microscopy. J Cell Biol 25: 407–408Google Scholar
  36. Viñuela E (1985) African swine fever virus. Curr Top Microbiol Immunol 116: 151–170Google Scholar
  37. Williams MA (1977) Quantitative methods in biology. In: Glauert AM (ed) Practical methods in electron microscopy, vol 6. North-Holland Biomedical Press, Amsterdam, p. 63Google Scholar
  38. Williams T (1996) The Iridoviruses. Adv Virus Res 46: 345–412Google Scholar

Copyright information

© Springer-Verlag 1998

Authors and Affiliations

  • Susanne Wolf
    • 1
  • I. Maier
    • 1
  • C. Katsaros
    • 2
  • D. G. Müller
    • 1
  1. 1.Fakultät für BiologieUniversität KonstanzKonstanzFederal Republic of Germany
  2. 2.Institute of General BotanyUniversity of AthensAthens

Personalised recommendations