Advertisement

Protoplasma

, Volume 206, Issue 1–3, pp 73–86 | Cite as

Ultrarapid endocytotic uptake of large molecules inDunaliella species

  • M. Ginzburg
  • B. Z. Ginzburg
  • R. Wayne
Article

Summary

This paper describes the uptake of Lucifer Yellow carbohydrazide and fluorescent dextrans labeled with fluorescein isothiocyanate or Sodium Green (molecular masses ranging from 522 to 2 × 106 Da) byDunaliella spp. halotolerant unicellular green algae isolated from salt pools in the Sinai peninsula. The fluorescent dyes were taken up into a set of vesicles around the nucleus and just above the chloroplast. It proved impossible to inhibit uptake of the fluorescent compounds in cells treated with a large variety of metabolic and other inhibitors. Cell labeling was complete within half a minute of addition of fluorescent compounds to the outside medium; efflux was equally rapid. The results are interpreted in terms of an endocytotic process whereby the outside medium, together with any substance dissolved in it, remains within vesicles enclosed within the cell body but cycles rapidly between the plasma membrane and the interior of the cell. The outside medium does not pass across the vesicular membrane, nor enters the cytosol.

Keywords

Algae Dunaliella sp. Endocytosis Halophilism 

Abbreviations

LYCH

Lucifer Yellow carbohydrazide

FITC

fluorescein-5-isothiocyanate

TCA

trichloroacetic acid

DMSO

dimethylsulfoxide

NEM

N-ethyl maleimide

DNP

dinitrophenol

CCCP

m-chlorocarbonyl-cyanide phenylhydrazone

APM

amiprophos-methyl

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beech PL, Wetherbee R (1988) Observations on the flagellar apparatus and peripheral endoplasmic reticulum of the coccol ithophoridPleurochrysis carterae. Phycologia 27: 142–158Google Scholar
  2. Ben-Amotz A (1974) Osmoregulation mechanism in the halophylic algaDunaliella parva. In: Zimmermann U, Dainty J (eds) Membrane transport in plants. Springer, Berlin Heidelberg New York, pp 95–100Google Scholar
  3. —, Avron M (1973) The role of glycerol in the osmotic regulation of the halophilic algaDunaliella parva. Plant Physiol 51: 875–878Google Scholar
  4. —, Ginzburg BZ (1969) Light-induced proton uptake in whole cells ofDunaliella parva. Biochim Biophys Acta 183: 144–154Google Scholar
  5. Bental M, Degani H, Avron M (1988) 23Na-NMR studies of the intracellular sodium ion concentration in the halotolerant algaDunaliella salina. Plant Physiol 87: 813–817Google Scholar
  6. Betz WJ, Angleson JK (1998) The synaptic vesicle cycle. Annu Rev Physiol 60: 347–363Google Scholar
  7. Bock RM, Ling N-S, Morell SA, Lipton SH (1956) Ultraviolet absorption spectra of adenosine-5′-triphosphate and related 5′-ribonucleotides. Arch Biochem Biophys 62: 253–264Google Scholar
  8. Borowitzka LJ, Brown AD (1974) The salt relations of marine and halophylic species of the unicellular green algaDunaliella. Arch Microbiol 96: 37–52Google Scholar
  9. Bowers B, Olszewski TE (1972) Pinocytosis inAcanthamoeba: kinetics and morphology. J Cell Biol 53: 681–694Google Scholar
  10. Clayton MN, Ashburner CM (1994) Secretion of phenolic bodies following fertilization inDurvillaea potatorum (Durvillaeales, Phaeophyta). Eur J Phycol 29: 1–9Google Scholar
  11. Coleman J, Evans D, Hawes C, Horsley D, Cole L (1987) Structure and molecular organization of higher plant coated vesicles. J Cell Sei 88: 35–45Google Scholar
  12. Craigie JS, McLachlan J (1964) Glycerol as a photosynthetic product inDunaliella tertiolecta Butcher. Can J Bot 42: 777–778Google Scholar
  13. Cunningham RF, Israili ZH, Dayton PG (1981) Clinical pharmacokinetics of probenecid. Clin Pharmacol Kinet 6: 135–151Google Scholar
  14. de Duve C (1963) “Endocytosis”, a note. In: de Reuck AVS, Cameron MP (eds) Lysosomes. Little, Brown and Co, Boston, p 126Google Scholar
  15. Diekmann W, Hedrich R, Raschke K, Robinson DG (1993) Osmocytosis and vacuolar fragmentation in guard cell protoplasts: their relevance to osmotically-induced volume changes in guard cells. J Exp Bot 44: 1569–1577Google Scholar
  16. Domozych DS, Nimmons TT (1992) The contractile vacuole as an endocytic organelle of the chlamydomonad flagellateGloeomonas kupferi (Volvocales, Chlorophyta). J Phycol 28: 809–816Google Scholar
  17. Ehrenfeld J, Cousin J-L (1982) Ionic regulation of the unicellular green algaDunaliella tertiolecta. J Membr Biol 70: 47–57Google Scholar
  18. — — (1984) Ionic regulation of the unicellular green algaDunaliella tertiolecta: response to hypertonic shock. J Membr Biol 77: 45–55Google Scholar
  19. Emons, AMC, Traas JA (1986) Coated pits and coated vesicles on the plasma membrane of plant cells. Eur J Cell Biol 41: 57–64Google Scholar
  20. Fisher M, Gokhman I, Pick U, Zamir A (1997) A structurally novel transferrin-like protein accumulates in the plasma membrane of the unicellular green algaDunaliella salina grown in high salinities. J Biol Chem 272: 1565–1570Google Scholar
  21. Fowke LC, Tanchak MA (1988) The structure and function of plant coated vesicles. In: Pais MSS, Mavituna F, Novais JM (eds) Plant cell biotechnology. Springer, Berlin Heidelberg New York Tokyo, pp 153–163 (NATO ASI Series, series H, vol 18)Google Scholar
  22. — —, Galway ME (1991) Ultrastructural cytology of the endocytotic pathway in plants. In: Hawes CR, Coleman JOD, Evans DE (eds) Endocytosis, exocytosis and vesicle traffic in plants. Cambridge University Press, Cambridge, pp 15–40 (Society for Experimental Biology Seminar series, vol 45)Google Scholar
  23. Ginzburg BZ (1978) Regulation of cell volume and osmotic pressure inDunaliella. In: Caplan SR, Ginzburg M (eds) Energetics and structure of halophilic microorganisms. Elsevier, Amsterdam, pp 543–558Google Scholar
  24. Ginzburg M (1969) The unusual permeability of two halophilic unicellular organisms. Biochim Biophys Acta 173: 370–5/6Google Scholar
  25. — (1987)Dunaliella: a green alga adapted to salt. Adv Bot Res 14: 93–183Google Scholar
  26. —, Richman L (1985) Permeability of wholeDunaliella cells to glucose. J Exp Bot 36: 1959–1968Google Scholar
  27. —, Ginzburg BZ, Wayne R (1997) The plasma membrane ofDunaliella is more than a plasma membrane! Plant Physiol 114: S42, abstract 120Google Scholar
  28. Hopkins CR, Gibson A, Shipman M, Miller K (1990) Movement of internalized ligand-receptor complexes along a continuous endosomal reticulum. Nature 346: 335–338Google Scholar
  29. Karni L, Avron M (1988) Ion content of the halotolerant algaDunaliella salina. Plant Cell Physiol 29: 1311–1314Google Scholar
  30. Lenhard JM, Mayorga L, Stahel PD (1992) Characterisation of endosome-endosome fusion in a cell free system usingDictyostelium discoideum. J Biol Chem 267: 1896–1903Google Scholar
  31. Low PS, Chandra S (1994) Endocytosis in plants. Annu Rev Plant Physiol Plant Mol Biol 45: 609–631Google Scholar
  32. Maeda M, Thompson GA (1986) On the mechanism of rapid plasma membrane and chloroplast envelope expansion inDunaliella salina exposed to hyperosmotic shock. J Cell Biol 102: 289–297Google Scholar
  33. Marsh M, Helenius A (1980) Adsorptive endocytosis of semliki forest virus. J Mol Biol 142: 439–454Google Scholar
  34. McFadden GI, Preisig HR, Melkonian M (1986) Golgi apparatus activity and membrane flow during scale biogenesis in the green flagellateScherffelia dubia (Prasinophyceae) II: cell wall secretion and assembly. Protoplasma 131: 174–184Google Scholar
  35. Miller DM, de Ruijter CA, Emons AMC (1997) From signal to form: aspects of the cytoskeleton-plasma membrane-cell wall continuum in root hair tips. J Exp Bot 48: 1881–1896Google Scholar
  36. Miller TM, Heuser JE (1984) Endocytosis of synaptic vesicle membrane at the frog neuromuscular junction. J Cell Biol 98: 685–698Google Scholar
  37. Mukherjee S, Ghosh RN, Maxfield FR (1997) Endocytosis. Physiol Rev 77: 760–803Google Scholar
  38. O'Driscoll D, Hann C, Read SM, Steer MW (1993) Endocytotic uptake of fluorescent dextrans by pollen tubes grown in vitro. Protoplasma 175: 126–130Google Scholar
  39. O'Neil RM, La Claire JW II (1988) Endocytosis and membrane dynamics during the wound response of the green algaBoergenesia. Cytobios 53: 113–125Google Scholar
  40. Oliviera L, Bisalputra T, Antia NJ (1980) Ultrastructural observation of the surface coat ofDunaliella tertiolecta from staining with cationic dyes and enzyme treatments. New Phytol 85: 385–392Google Scholar
  41. Oparka KJ, Prior DAM, Harris N (1990) Osmotic induction of fluidphase endocytosis in onion epidermal cells. Planta 180: 555–561Google Scholar
  42. —, Murant EA, Wright KM, Prior DAM, Harris N (1991) The drug probenecid inhibits the vacuolar accumulation of fluorescent anions in onion epidermal cells. J Cell Sci 99: 557–563Google Scholar
  43. Patzak A, Annis D, Langley K (1987) Membrane recycling after exocytosis: an ultrastructure study of cultured chromaffin cells. Exp Cell Res 171: 346–356Google Scholar
  44. Picton JM, Steer MW (1983) Membrane recycling and the control of secretory activity in pollen tubes. J Cell Sci 63: 303–310Google Scholar
  45. Pick U, Karni L, Avron M (1986) Determination of ion content and ion fluxes in the halotolerant algaDunaliella salina. Plant Physiol 81: 92–96Google Scholar
  46. Prescianotto-Baschong C, Riezman H (1998) Morphology of the yeast endocytotic pathway. Mol Biol Cell 9: 173–189Google Scholar
  47. Roszak R, Rambour S (1997) Uptake of Lucifer Yellow by plant cells in the presence of endocytotic inhibitors. Protoplasma 199: 198–207Google Scholar
  48. Samuels AL, Bisapultra T (1990) Endocytosis in elongating root cells ofLobelia erinus. J Cell Sci 97: 157–165Google Scholar
  49. Skulachev VP (1994) The latest news from the sodium world. Biochim Biophys Acta 1187: 216–221Google Scholar
  50. Steinman RM, Brodie SE, Cohn ZA (1983) Membrane flow during pinocytosis: a stereologic analysis. J Cell Biol 68: 665–687Google Scholar
  51. Tanchak M, Griffing L, Mersey B, Fowke L (1984) Endocytosis of cationized ferritin by coated vesicles of soybean protoplasts. Planta 162: 481–486Google Scholar
  52. —, Rennie PJ, Fowke LC (1988) Ultrastructure of the partially coated reticulum and dictyosomes during endocytosis by soybeans protoplasts. Planta 175: 433–441Google Scholar
  53. Thilo L (1985) Selective internalization of granule membrane after secretion in mast cells. Proc Natl Acad Sci USA 82: 1711–1715Google Scholar
  54. Thomas P, Lee A, Wong J, Almers W (1994) A triggered mechanism retrieves membrane in seconds after Ca2+-stimulated exocytosis in single pituitary cells. J Cell Biol 124: 667–675Google Scholar
  55. Trezzi F, Galli MG, Bellini E (1965) L'osmoresistenza diDunaliella salina: richerche ultrastrutturali. G Bot Ital 72: 255–263Google Scholar
  56. van Deurs B, Petersen O, Olsnes S, Sandvig K (1989) The ways of endocytosis. Int Rev Cytol 117: 131–177Google Scholar
  57. von Grafenstein H, Roberts CS, Baker PF (1986) Kinetic analysis of the triggered exocytosis/endocytosis secretory cycle in cultured bovine adrenal medullary cells. J Cell Biol 103: 2343–2352Google Scholar
  58. Watts C, Marsh M (1992) Endocytosis: what goes in and how? J Cell Sci 103: 1–8Google Scholar
  59. Wayne R, Kadota A, Watanabe M, Fumya M (1991) Photomovement inDunaliella salina fluence rate: response curves and action spectra. Planta 184: 515–524Google Scholar
  60. Zhang XQ, Dubacq J-P, Alfsen A (1993) Biochemical and cytological evidence for the stimulation of clathrin-coated pit (vesicle) formation by exogenous folic acid inDunaliella salina (Chlorophyta). J Phycol 29: 302–209Google Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • M. Ginzburg
    • 1
    • 2
  • B. Z. Ginzburg
    • 1
    • 2
  • R. Wayne
    • 1
  1. 1.Section of Plant BiologyCornell UniversityIthaca
  2. 2.Plant Biophysical Laboratory, Botany Department, Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations