Protoplasma

, Volume 74, Issue 1–2, pp 53–70 | Cite as

Motile protoplasmic fibtils in cells of theCharaceae

  • Eiji Kamitsubo
Article

Summary

  1. 1.

    In order to further elucidate the mechanism of protoplasmic streaming, the structure and behaviour of motile protoplasmic fibrils were studied in living characean cells ofNitella flexilis, Lamprothamnium succinctum, andCbara australis on the light microscopic level.

     
  2. 2.

    Motile fibrils similar to those described in cytoplasmic drops isolatedin vitro from Characeae cells, are also foundin vivo in the endoplasm in centrifuged cells. The intracellular, freely-moving fibrils appear mostly in the form of polygons.

     
  3. 3.

    The modes of movement of the fibrillar loops are classified into two categories,i.e., 1) undulatory type and 2) rotatory type. Generally the fibrils belonging to the undulatory type have many small cytoplasmic particles associated with them while those classified as rotatory type are nearly free of particles and the fibrilsper se are observable. The width of the naked fibril is estimated to be in the range 0.1–0.2μ. It was shown that the speed of the fibrils of the rotatory type approximates the rate of normal protoplasmic streaming (70–80 μ/sec at 23° C).

     
  4. 4.

    A thin (ca. 0.2μ), linear, stationary fibrillar structure is found at zoneD (cf., Fig. 1) of the centrifuged internode ofNitella. The characteristics of the linear structure anchored to the cortex are quite similar to those of the motile fibrillar loops of the rotatory type. Transition from the linear fibril to the rotating loop was observed. It was shown that there is a close relation between the linear fibrillar structure and protoplasmic streaming.

     
  5. 5.

    The thin, linear, stationary fibrillar structures are also found in the rhizoid and both etiolated and intact internodes ofNitella flexilis and in normal internodal cells of bothLamprothamnium succinctum andChara australis. The fibrils in question seem to be the morphological entity responsible for protoplasmic streaming.

     

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown, R. H. J., 1940: The protoplasmic viscosity ofParamecium. J. Exp. Biol.17, 317–324.Google Scholar
  2. Hayashi, T., 1957: Some dynamic properties of the protoplasmic streaming inCham. Bot. Mag. (Tokyo)70, 168–174.Google Scholar
  3. — 1960: Experimental studies on protoplasmic streaming inCharaceae. Sci., Papers Coll. Gen. Educ. Univ. Tokyo10, 245–282.Google Scholar
  4. Honda, S. I., T. Hongladarom, andS. G. Wildman, 1964: Characteristic movements of organelles in streaming cytoplasm of plant cells. In: Primitive Motile Systems in Cell Biology, 485–502 (R. D. Allen andN. Kamiya, eds.). New York-London: Academic Press.Google Scholar
  5. Jarosch, R., 1956: Plasmaströmung und Chloroplastenrotation bei Characeen. Phyton (Buenos Aires)6, 87–108.Google Scholar
  6. —, 1957: Zur Mechanik der Protoplasmafibrillenbewegung. Biochim. Biophys. Acta25, 204–205.PubMedGoogle Scholar
  7. —, 1958: Die Protoplasmafibrillen der Characeen. Protoplasma50, 93–108.Google Scholar
  8. —, 1960: Die Dynamik im Characeen-Protoplasma. Phyton (Buenos Aires)15, 43–66.Google Scholar
  9. Kamiya, N., 1959: Protoplasmic streaming. In: Protoplasmatologia (L. V. Heilbrunn andF. Weber, eds.). Wien: Springer-Verlag,VIII/3 a. Google Scholar
  10. —, 1960: Physics and chemistry of protoplasmic streaming. Ann. Rev. Plant Physiol.11, 323–340.Google Scholar
  11. —, 1962: Protoplasmic streaming. In: Handbuch der PflanzenphysiologieXVII/2, 979–1035 (W. Ruhland, ed.). Berlin-Göttingen-Heidelberg: Springer-Verlag.Google Scholar
  12. —, andK. Kuroda, 1956: Velocity distribution of the protoplasmic streaming inNitella cells. Bot. Mag. (Tokyo)69, 544–554.Google Scholar
  13. — — 1957: Cell operation inNitella. I. Cell amputation and effusion of the endoplasm. Proc. Japan Acad.33, 149–152.Google Scholar
  14. Kuroda, K., 1964: Behaviour of naked cytoplasmic drops isolated from plant cells. In: Primitive Motile Systems in Cell Biology, 31–41 (R. D. Allen andN. Kamiya, eds.). New York-London: Academic Press.Google Scholar
  15. Nagai, R., andL. I. Rebhun, 1966: Cytoplasmic microfilaments in streamingNitella cells. J. Ultrastructure Res.14, 571–589.Google Scholar
  16. Pickett-Heaps, J. D., 1967: Ultrastructure and differentiation inCbara sp. Aust. J. biol. Sci.20, 539–551.Google Scholar
  17. Wessells, N. K., B. S. Spooner, J. F. Ash, M. O. Bradley, M. A. Luduena, E. L. Taylor, J. T. Wrenn, K. M. Yamada, 1971: Microfilaments in cellular and developmental processes. Science171, 135–143.PubMedGoogle Scholar
  18. Yotsuyanagi, Y., 1953: Recherches sur les phénomènes moteurs dans les fragments de protoplasme isolés. II. Mouvements divers déterminés par la condition de milieu. Cytologia18, 202–217.Google Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • Eiji Kamitsubo
    • 1
  1. 1.Department of Biology, Faculty of ScienceOsaka UniversityOsakaJapan

Personalised recommendations