algebra universalis

, Volume 20, Issue 2, pp 135–142

Two consistency results concerning thin-tall Boolean algebras

  • Winfried Just


In this paper we show that the following is relatively consistent withZFC +⌝CH: “There is no superatomic Boolean algebra of height ω2+1 and widthω, and there is no superatomic Boolean algebraA with\(\left| {At(A)} \right| = \omega , \omega \leqslant \left| {At^{(\alpha )} (A)} \right| \leqslant \omega _1 \) for 0<α<ω1 and\(\left| {At^{(\omega _1 )} (A)} \right| = \omega _2 \)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [D]
    G. W. Day,Superatomic Boolean algebras, Pacific J. Math.23 (1967), 479–489.Google Scholar
  2. [JKR]
    I. Juh ász, K. Kunen andM. E. Rudin,Two more hereditarily separable non-Lindelöf spaces, Canad. J. Math.28 (1976), 998–1005.Google Scholar
  3. [JW]
    I. Juhász andW. Weiss,On thin-tall scattered spaces, Coll. Math.40 (1978), 63–68.Google Scholar
  4. [K]
    K.Kunen,Set theory, North-Holland, 1980.Google Scholar
  5. [R]
    M. Rajagopalan,A chain compact space which is not strongly scattered, Israel J. Math.23 (1976), 117–125.Google Scholar
  6. [W1]
    M.Weese,On the classification of compact scattered spaces, preprint.Google Scholar
  7. [W2]
    M.Weese,On cardinal sequences of Boolean algebras, to appear in Algebra Universalis.Google Scholar

Copyright information

© Birkhäuser Verlag 1985

Authors and Affiliations

  • Winfried Just
    • 1
  1. 1.Warsaw UniversityWarsawPoland

Personalised recommendations