, Volume 97, Issue 4, pp 337–349

Determination of the sodium, potassium and chloride ion concentrations in the chloroplasts of the halophyteSuaeda maritima by non-aqueous cell fractionation

  • Diana M. R. Harvey
  • T. J. Flowers


Leaf material from the halophyteSuaeda maritima L. Dum. grown under both saline and non-saline conditions was fractionated under non-aqueous conditions in order to determine the ion content of various subcellular compartments. Fractions containing cell walls, nuclei and chloroplasts were successfully prepared and contents of DNA, chlorophyll, protein and Na+, K+, and Cl determined. The cell wall fraction was not apparently heavily contaminated by the other fractions and had a low ion content although the nuclear fraction was contaminated by other organelles. The ion contents of chloroplasts were determined and the results discussed in relation to earlier microscopical data.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allfrey, V., 1959: The isolation of subcellular components. In: The cell (Brachet, J., Mirsky, A. E., eds.)1, 193–290. New York: Academic Press.Google Scholar
  2. Arnon, D. I., 1949: Copper enzymes in isolated chloroplasts. Polyphenoloxidase inBeta vulgaris. Pl. Physiol.24, 1–15.Google Scholar
  3. Behrens, M., 1938: Über die Lokalisation der Hefenucleinsäure in pflanzlichen Zellen. Hoppe-Seylers Z. physiol. Chem.253, 185–192.Google Scholar
  4. Flowers, T. J., 1972: Salt tolerance inSuaeda maritima L. Dum. The effect of sodium chloride on growth, respiration, and soluble enzymes in a comparative study withPisum sativum L. J. exp. Bot.23, 310–321.Google Scholar
  5. —,Hall, J. L., 1973: Biochemical and cytochemical studies ofSuaeda maritima. In: Ion transport in plants (Anderson, W. P., ed.), pp. 357–368. New York: Academic Press.Google Scholar
  6. —,Troke, P. F., Yeo, A. R., 1977: The mechanism of salt tolerance in halophytes. Ann. Rev. Pl. Physiol.28, 89–121.Google Scholar
  7. Ganguli, P. K., 1970: The effect of inorganic salts on the colorimetric estimation of deoxyribonucleic acid by the diphenylamine reaction. Rev. canad. Biol.29, 261–269.Google Scholar
  8. Harvey, D. M. R., 1978: A study of ion localization and cell ultrastructure in leaves of the halophyteSuaeda maritima. D. Phil. Thesis, University of Sussex.Google Scholar
  9. —,Flowers, T. J., Hall, J. L., 1976: Localization of chloride in leaf cells of the halophyteSuaeda maritima by silver precipitation. New Phytol.77, 319–323.Google Scholar
  10. Heber, U., 1974: Chloroplast cytoplasm interactions. Ann. Rev. Pl. Physiol.25, 393–422.Google Scholar
  11. Larkum, A. W. D., 1968: Ionic relations of chloroplastsin vivo. Nature218, 447–449.Google Scholar
  12. —,Hill, A. E., 1970: Ion and water transport inLimonium V. The ionic status of chloroplasts in the leaf ofLimonium vulgare in relation to the activity of the salt glands. Biochim. biophys. Acta203, 133–138.Google Scholar
  13. Lowry, O. H., Rosebrough, N. J., Farr, N. C., Randall, R. J., 1951: Protein measurement with the Folin reagent. J. biol. Chem.193, 265–275.Google Scholar
  14. Mix, G., Marschner, H., 1974: Mineralstoffverteilung zwischen Chloroplasten und übrigem Blattgewebe. Z. Pflanzenphysiol.73, 307–312.Google Scholar
  15. Nobel, P. S., 1975: Chloroplasts. In: Ion transport in plant cells and tissues (Baker, D. A., Hall, J. L., eds.), pp. 101–124. Amsterdam: North Holland.Google Scholar
  16. Pallaghy, C. K., 1973: Electron probe microanalysis of potassium and chloride in freeze-substituted leaf sections ofZea mays. Aust. J. biol. Sci.26, 1015–1034.Google Scholar
  17. Schneider, W. C., 1945: Phosporus compounds in animal tissues. 1. Extraction and estimation of desoxypentose nucleic acid and pentose nucleic acid. J. biol. Chem.161, 293–303.Google Scholar
  18. Slack, C. R., 1969: Localization of certain photosynthetic enzymes in mesophyll and parenchyma sheath chloroplasts of maize andAmaranthus palmeri. Phytochemistry8, 1387–1391.Google Scholar
  19. Smillie, R. H., 1963: Formation and function of soluble proteins in chloroplasts. Canad. J. Bot.41, 123–154.Google Scholar
  20. Stern, H., Mirsky, A. E., 1952: The isolation of wheat germ nuclei and some aspects of their glycolytic metabolism. J. gen. Physiol.36, 181–200.Google Scholar
  21. Stocking, C. R., 1971: Chloroplasts: non-aqueous. Meth. Enzym.23, 221–226.Google Scholar
  22. —,Shumway, L. K., Weier, T. E., Greenwood, D., 1968: Ultrastructure of chloroplasts isolated by non-aqueous extraction. J. Cell Biol.36, 270–275.Google Scholar
  23. Thompson, C. M., Whittingham, C. P., 1967: Intracellular localization of phosphoglycollate phosphatase and glyoxylate reductase. Biochim. biophys. Acta143, 642–644.Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Diana M. R. Harvey
    • 1
  • T. J. Flowers
    • 1
  1. 1.School of BiologyUniversity of SussexFalmer, BrightonUK

Personalised recommendations