, Volume 93, Issue 2–3, pp 325–339

Colony formation and inversion in the green algaEudorina elegans

  • H. J. Marchant
Original Papers


During development of daughter coenobia in the volvocalean algaEudorina a rapid synchronized series of mitotic divisions and cytokineses gives rise to a slightly cup-shaped, patterned array of 16 or 32 cells, the plakea; the nuclei and centrioles of each cell lying at the concave face and the plastids at the convex face. Each cell is connected to its neighbours by cytoplasmic bridges. All cells within a plakea simultaneously elongate and enlarge their nuclear poles; while remaining interconnected by the cytoplasmic bridges at their plastid poles. The result is inversion of the developing coenobia so that the nuclei and centrioles come to lie on the convex, outer surface. Inversion is inhibited by colchicine and cytochalasin B. Both lengthening of the cells and expansion of their nuclear end is apparently mediated by microtubules. Striations on the plasmalemma encircling the bridges are thought to stablize the membrane at these sites during inversion.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bisalputra, T., andJ. R. Stein, 1966: The development of cytoplasmic bridges inVolvox aureus. Canad. J. Bot.44, 1697–1702.Google Scholar
  2. Bouck, G. B., andD. L. Brown, 1973: Microtubule biogenesis and cell shape inOchromonas. 1. The distribution of cytoplasmic and mitotic microtubules. J. Cell Biol.56, 340–359.PubMedGoogle Scholar
  3. Bradley, M. O., 1973: Microfilaments and cytoplasmic streaming: inhibition of streaming with cytochalasin. J. Cell Sci.12, 327–343.PubMedGoogle Scholar
  4. Brown, D. L., andG. B. Bouck, 1974: Microtubule biogenesis and cell shape mOchromonas. III. Effects of the herbicidal mitotic inhibitor isopropyl N-phenycarbamate on shape and flagellum regeneration. J. Cell Biol.61, 514–536.PubMedGoogle Scholar
  5. Burnside, B., 1971: Microtubules and microfilaments in newt neurulation. Develop. Biol.26, 416–441.PubMedGoogle Scholar
  6. Byers, B., andL. Goetsch, 1976: A highly ordered ring of membrane-associated filaments in budding yeast. J. Cell Biol.69, 717–721.PubMedGoogle Scholar
  7. Conrad, W., 1913: Observations surEudorina elegans Ehrenb. Rec. Inst. Bot. Bruxelle9, 321–343.Google Scholar
  8. Coss, R. A., 1974: Mitosis inChlamydomonas reinhardtii basal bodies and the mitotic apparatus. J. Cell Biol.63, 325–329.PubMedGoogle Scholar
  9. Deason, T. R., andW. H. Darden, Jr., 1971: The male initial and mitosis inVolvox. In: Contributions in phycology (Parker, B. C., andR. M. Brown, Jr., eds.), pp. 67–79. Kansas: Allen Press.Google Scholar
  10. Dolzmann, R., undP. Dolzmann, 1964: Untersuchungen über die Feinstruktur und die Funktion der Plasmodesmen vonVolvox aureus. Planta (Berl.)61, 332–345.Google Scholar
  11. Gerisch, G., 1959: Die Zelldifferenzierung beiPleodorina californica Shaw und die Organisation der Phytomonadinenkolonien. Arch. Protistenk.104, 292–358.Google Scholar
  12. Gibbins, J. R., L. G. Tilney, andK. R. Porter, 1969: Microtubules in the formation and development of the primary mesenchyme inArbacia punctulata. I. The distribution of microtubules. J. Cell Biol.41, 201–226.PubMedGoogle Scholar
  13. Goldstein, M., 1964: Speciation and mating behaviour inEudorina. J. Protozool.11, 317–344.Google Scholar
  14. —, 1967: Colony differentiation inEudorina. Canad. J. Bot.45, 1591–1596.Google Scholar
  15. Granholm, N. H., andJ. R. Baker, 1970: Cytoplasmic microtubules and the mechanism of avian gastrulation. Develop. Biol.23, 563–584.PubMedGoogle Scholar
  16. Harper, R. A., 1912: The structure and development of the colony inGonium. Trans. Amer. Micros. Soc.31, 65–85.Google Scholar
  17. Hartmann, M., 1924: Über die Veränderung der Koloniebildung vonEudorina elegans undGonium pectorale unter dem Einfluß äußerer Bedingungen. Arch. Protistenk.59, 375–395.Google Scholar
  18. Hepler, P. K., andB. A. Palevitz, 1974: Microtubules and microfilaments. Ann. Rev. Plant Physiol.25, 309–362.Google Scholar
  19. Hobbs, M. J., 1971: The fine structure ofEudorina illinoiensis (Kofoid) Pascher. Br. phycol. J.6, 81–103.Google Scholar
  20. Ikushima, N., andS. Maruyama, 1968: The protoplasmic connection inVolvox. J. Protozool.15, 136–140.Google Scholar
  21. Johnson, U. G., andK. R. Porter, 1968: Fine structure of cell division inChlamydomonas reinhardi. J. Cell Biol.38, 403–425.PubMedGoogle Scholar
  22. Lewis, J. H., andL. Wolpert, 1976: The principle of non-equivalence in development. J. theor. Biol.62, 479–490.PubMedGoogle Scholar
  23. Marchant, H. J., 1974 a: Mitosis, cytokinesis and colony formation inPediastrum boryanum. Ann. Bot.38, 883–888.Google Scholar
  24. —, 1974 b: Mitosis, cytokinesis, and colony formation in the green algaSorastrum. J. Phycol.10, 107–120.Google Scholar
  25. —, 1976 a: Plasmodesmata in algae and fungi. In: Intercellular communication in plants: Studies on plasmodesmata (Gunning, B. E. S., andA. W. Robards, eds.), pp. 59–80. Berlin-Heidelberg-New York: Springer.Google Scholar
  26. —, 1976 b: Actin in the green algaeColeochaete andMougeotia. Planta (Berl.)131, 119–120.Google Scholar
  27. Morse, D. C., 1943: Some details of asexual reproduction inPandorina morum. Trans. Amer. Micros. Soc.62, 24–26.Google Scholar
  28. Palevitz, B. A., andP. K. Hepler, 1975: Identification of actinin situ at the ectoplasm— endoplasm interface ofNitella. J. Cell Biol.65, 29–38.PubMedGoogle Scholar
  29. Pickett-Heaps, J. D., 1970: Some ultrastructural features ofVolvox, with particular reference to the phenomenon of inversion. Planta (Berl.)90, 174–190.Google Scholar
  30. —, 1973: Cell division inTetraspora. Ann. Bot.37, 1017–1025.Google Scholar
  31. —, 1975: Green algae: Structure, function and evolution in selected genera. Sunderland, Mass.: Sinauer Assoc.Google Scholar
  32. Pocock, M. A., 1933:Volvox in South Africa. Ann. S. Afr. Mus.16, 523–646.Google Scholar
  33. —, 1960:Hydrodictyon: a comparative biological study. J. S. Afr. Bot.26, 167–319.Google Scholar
  34. Spurr, A. R., 1969. A low viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res.26, 31–49.PubMedGoogle Scholar
  35. Stein, J. R., 1965: On cytoplasmic strands inGonium pectorale (Volvocales). J. Phycol.1, 1–5.Google Scholar
  36. Taft, C. E., 1941: Inversion of the developing coenobium inPandorina morum Bory. Trans. Amer. Micros. Soc.60, 327–328.Google Scholar
  37. Tilney, L. G., andJ. R. Gibbins, 1969: Microtubules in the formation and development of the primary mesenchyme inArbacia punctulata. II. An experimental analysis of their role in development and maintenance of cell shape. J. Cell Biol.41, 227–250.PubMedGoogle Scholar
  38. Treimer, R. E., andR. M. Brown, Jr., 1974: Cell division inChlamydomonas moewusii. J. Phycol.10, 419–433.Google Scholar
  39. Williamson, R. E., 1974: Actin in the alga,Chara corallina. Nature248, 801–802.PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • H. J. Marchant
    • 1
  1. 1.Department of Developmental Biology, Research School of Biological SciencesAustralian National UniversityCanberraAustralia

Personalised recommendations