Advertisement

Journal of Neurocytology

, Volume 23, Issue 4, pp 218–233 | Cite as

Axotomy induces intranuclear immunolocalization of neuron-specific enolase in facial and hypoglossal neurons of the rat

  • D. N. Angelov
  • W. F. Neiss
  • A. Gunkel
  • O. Guntinas-Lichius
  • E. Stennert
Article

Summary

Neuron-specific enolase as an enzyme of the glycolytic pathway is localized in the cytoplasm of nerve cells, but not in the cell nucleus. We have applied immunocytochemistry with 1∶64 000 polyclonal anti-rat neuron-specific enolase to the brainstem of male and female adult Wistar rats following: (a) transection of the facial nerve with immediate microsurgical nerve suture (facial-facial anastomosis), (b) transection of the hypoglossal nerve with immediate suture (hypoglossal-hypoglossal anastomosis) and (c) transection of the facial and hypoglossal nerve with immediate suture of the proximal hypoglossal to the distal facial nerve stump (hypoglossal-facial anastomosis). Studying the intracellular immunolocalization of neuron-specific enolase in neurons of the facial and hypoglossal nucleus we detected that (1) in normal rats about 20% of all facial and hypoglossal neurons display not only cytoplasmic, but also intranuclear neuron-specific enolase-like immunoreactivity and (2) following any axotomy of the facial or hypoglossal peripheral nerve, the perikarya of all injured motoneurons react by an outstanding increase of neuron-specific enolase-like immunoreactivity in the karyoplasm. Similar findings were obtained in experiments on non-fixed cultured Neuro-2a cells that had been lesioned with hydrogen peroxide. Counting the absolute numbers of normal and reactive neurons at 1–365 days post axotomy revealed that the increase of neuron-specific enolase in neuronal cell nuclei is temporary and reversible. It is first detected at 2 days post axotomy, reaches its maximum at 10–18 days post axotomy and is no longer evident 56 days following surgery. These findings suggest that the intranuclear neuron-specific enolase-like immunoreactive material may serve a regulatory function on the genome.

Keywords

Facial Nerve Hypoglossal Nerve Nerve Stump Hypoglossal Nucleus Immunoreactive Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberghina, M. &Guiffrida Stella, A. M. (1988) Changes of phospholipid-metabolizing and lysosomal enzymes in hypoglossal nucleus and ventral horn motoneurons during regeneration of craniospinal nerves.Journal of Neurochemistry 51, 15–20.PubMedGoogle Scholar
  2. Angelov, D. N., Gunkel, A., Stennert, E. &Neiss, W. F. (1993) Recovery of original nerve supply after hypoglossal-facial anastomosis causes permanent motoric hyperinnervation of the whiskerpad muscles in the rat.Journal of Comparative Neurology 398, 214–24.Google Scholar
  3. Arvidsson, U., Johnson, H., Piehl, H., Cullheim, S., Hökfelt, T., Risling, M., Terenius, L. &Ulfhake, B. (1990) Peripheral nerve section induces increased levels of calcitonin gene-related peptide (CGRP)-like immunoreactivity in axotomized motoneurons.Experimental Brain Research 79, 212–16.Google Scholar
  4. Austin, L. (1985) Molecular aspects of nerve regeneration. InAlterations of metabolites in the nervous system. Handbook of Neurochemistry, 2nd edition (edited byLajtha, A.) pp. 1–29. New York: Plenum Press.Google Scholar
  5. Barron, K. D. (1983) Axon reaction and central nervous regeneration. InNerve, organ and tissue regeneration: research prospectives (edited bySeil, F. J.) pp. 23–51. New York: Academic Press.Google Scholar
  6. Chau, R. M. W., Skaper, S. D. &Varon, S. (1988) Peroxidative block of glucose utilization and survival in CNS neuronal cultures.Neurochemical Research 13, 611–16.PubMedGoogle Scholar
  7. Fox, C. H., Johnson, F. B., Whiting, J. &Roller, P. P. (1985) Formaldehyde fixation.Journal of Histochemistry and Cytochemistry 33, 845–53.PubMedGoogle Scholar
  8. Graeber, M. B., Streit, W. J. &Kreutzberg, G. W. (1988) Axotomy of the facial nerve leads to increased CR3 complement receptor expression by activated microglial cells.Journal of Neuroscience Research 21, 18–24.PubMedGoogle Scholar
  9. Grafstein, B. (1983) Chromatolysis reconsidered: a new view of the reaction of the nerve cell body to axon injury. InNerve, organ and tissue regeneration: research perspectives (edited bySeil, F. J.) pp. 37–50. New York: Academic Press.Google Scholar
  10. Gundersen, H. J. G. (1986) Stereology of arbitrary particles.Journal of Microscopy 143, 3–45.Google Scholar
  11. Guntinas-Lichius, O., Neiss, W. F. &Stennert, E. (1992) Variation of motoneuron numbers in the facial and hypoglossal nucleus within the same strain of Wistar rats estimated by the fractionator.European Journal of Neuroscience (Supplement) 5, 132.Google Scholar
  12. Guntinas-Lichius, O., Mockenhaupt, J., Stennert, E. &Neiss, W. F. (1993) Simplified nerve cell counting in the rat brainstem with the physical disector using a drawingmicroscope.Journal of Microscopy 172, 177–80.PubMedGoogle Scholar
  13. Haas, C. A., Streit, W. J. &Kreutzberg, G. W. (1990) Rat facial motoneurons express increased levels of calcitonin gene-related peptide mRNA in response to axotomy.Journal of Neuroscience Research 27, 270–5.PubMedGoogle Scholar
  14. Halliwell, B. &Gutteridge, J. M. C. (1985) Oxygen radicals and the nervous system.Trends in Neuroscience 8, 22–6.Google Scholar
  15. Hammerschlag, P. E. (1987) Hypoglossal facial nerve anastomosis for correction of facial nerve paralysis following cerebello-pontine angle surgery. InModern Techniques in Surgery (edited byRansohoff, J.) vol. 37, pp. 2–12. New York: Mount Kisco.Google Scholar
  16. Huang, W. M., Gibson, S. J., Facer, P., Yu, J. &Polak, J. M. (1983) Improved section adhesion for immunocytochemistry using high molecular weight polymers of L-lysine as a slide coating.Histochemistry 77, 275–9.PubMedGoogle Scholar
  17. Jackson, G. R., Apffel, L., Werrbach-Perez, K. &Perez-Polo, J. R. (1990) Role of nerve growth factor in oxidant-antioxidant balance and neuronal injury. I. Stimulation of hydrogen peroxide resistance.Journal of Neuroscience Research 25, 360–8.PubMedGoogle Scholar
  18. Kirino, T., Brightman, M. W., Oertel, W. H., Schmechel, D. E. &Marangos, P. J. (1983) Neuron-specific enolase as an index of neuronal regeneration and reinnervation.Journal of Neuroscience 3, 915–23.PubMedGoogle Scholar
  19. Klebe, R. J. &Ruddle, F. H. (1969) Neuroblastoma: cell culture analysis of a differentiating stem cell system.Journal of Cell Biology,43, 69A.Google Scholar
  20. Kreutzberg, G. W. (1982) Acute neuronal reaction to injury. InRepair and regeneration of the nervous system (edited byNicholls, J. G.) pp. 57–69. Berlin: Springer Verlag.Google Scholar
  21. Kreutzberg, G. W. (1985) The motoneuron and its micro-environment responding to axotomy. InNeural transplantation and regeneration (edited byDas, G. D. &Wallace, R. B.) pp. 271–6. New York: Springer.Google Scholar
  22. Lieberman, A. R. (1971) The axon reaction: a review of the principal features of the perikaryal response to axon injury.International Review of Neurobiology 14, 49–125.PubMedGoogle Scholar
  23. Manos, P. &Edmond, J. (1992) Immunofluorescent analysis of creatine kinase in cultured astrocytes by conventional and confocal microscopy: a nuclear localization.Journal of Comparative Neurology 326, 273–82.PubMedGoogle Scholar
  24. Marangos, P. J., Goodwin, F. K., Parma, A., Lauter, K. &Trams, E. (1978a) Neuron specific protein (NSP) in neuroblastoma cells: relation to differentiation.Brain Research 145, 49–58.PubMedGoogle Scholar
  25. Marangos, P. J., Zis, A. P., Clark, R. L. &Goodwin, F. K. (1978b) Neuronal, non-neuronal and hybrid forms of enolase in brain: structural, immunological and functional comparisons.Brain Research 150, 117–33.PubMedGoogle Scholar
  26. Marangos, P. J. &Schmechel, D. E. (1987) Neuron specific enolase, a clinically useful marker for neurons and neuroendocrine cells.Annual Reviews of Neuroscience 10, 269–95.Google Scholar
  27. Martin, E. M. E., Skaper, S. D. &Varon, S. (1987) Catalase protection of neuronal survivalin vitro is not directed to the accumulation of peroxides in the culture medium.International Journal of Developmental Neuroscience 5, 1–10.PubMedGoogle Scholar
  28. May, M. (1986) Surgical rehabilitation of facial palsy: total approach. InThe Facial Nerve (edited byMay, M.) pp. 695–777. New York: Thieme Inc.Google Scholar
  29. May, M., Sorol, S. M. &Mester, S. J. (1991) Hypoglossal-facial nerve interpositional-jump graft for facial reanimation without tongue atrophy.Otolaryngology Head and Neck Surgery 104, 818–25.PubMedGoogle Scholar
  30. Mccord, J. M. (1985) Oxygen-derived free radicals in postischemic tissue injury.New England Journal of Medicine 312, 159–63.PubMedGoogle Scholar
  31. Miehlke, A., Stennert, E., Arold, R., Chilla, R., Penzholz, H., KÜhner, A., Sturm, V. &Haubrich, J. (1981) Chirurgie der Nerven im HNO-Bereich (außer Nn. stato-acusticus und olfactorius).Archives of Oto-Rhino-Laryngology 231, 89–449.PubMedGoogle Scholar
  32. Miller, F. D., Tetzlaff, W., Bisby, M. A., Fawcett, J. W. &Milner, R. J. (1989) Rapid induction of the major embryonic alpha-tubulin mRNA, T alpha 1, during nerve regeneration in adult rats.Journal of Neuroscience 9, 1452–63.PubMedGoogle Scholar
  33. Murray, G. I. &Ewen, S. W. B. (1990) Enzyme histochemistry on freeze-substituted glycol methacrylate-embedded tissue.Journal of Histochemistry and Cytochemistry 38, 95–101.PubMedGoogle Scholar
  34. Neiss, W. F., Guntinas Lichius, O., Angelov, D. N., Gunkel, A. &Stennert, E. (1992) The hypoglossal-facial anastomosis as model of neuronal plasticity in the rat.Annals of Anatomy 174, 419–33.Google Scholar
  35. Newport, J. W. &Forbes, D. J. (1987) The nucleus: structure, function and dynamics.Annual Review of Biochemistry 56, 535–65.PubMedGoogle Scholar
  36. Nissl, F. (1892) Über die Veränderungen der Ganglienzellen am Facialiskern des Kaninchens nach Ausreissung der Nerven.Allgemeine Zeitschrift für Psychiatrie 48, 197–8.Google Scholar
  37. Ottersen, O. P. (1989) Quantitative electron microscopic immunocytochemistry of neuroactive amino acids.Anatomy and Embryology 180, 1–15.PubMedGoogle Scholar
  38. Pearson, R. C., Taylor, N. &Snyder, S. H. (1988) Tubulin messenger RNA:in situ hybridization reveals bilateral increase in hypoglossal and facial nuclei following nerve transection.Brain Research 463, 245–9.PubMedGoogle Scholar
  39. Perez-Polo, J. R., Foreman, P. J., Jackson, G. R., Shan, D. E., Taglialatela, G., Thorpe, L. W. &Werrbachperez, K. (1990) Nerve growth factor and neuronal cell death.Molecular Neurobiology 4, 57–91.PubMedGoogle Scholar
  40. Robinson, J. M. &Karnovsky, M. J. (1990) Rapid-freezing cytochemistry: preservation of tubular lysosomes and enzyme activity.Journal of Histochemistry and Cytochemistry 39, 787–92.Google Scholar
  41. Saika, T., Senba, E., Noguchi, K., Sato, M., Kubo, T., Matsunaga, T. &Tohyama, M. (1991) Changes in expression of peptides in rat facial motoneurons after facial nerve crushing and resection.Molecular Brain Research 11, 187–96.PubMedGoogle Scholar
  42. Sakimura, K., Kushiya, E., Obinata, M., Odani, S. &Takahashi, Y. (1985) Molecular cloning and the nucleotide sequence of cDNA for neuron-specific enolase messenger RNA of rat brain.Proceedings of the National Academy of Sciences (USA) 82, 7453–7.Google Scholar
  43. Schmechel, D. E., Brightman, M. W. &Barker, J. L. (1980a) Localization of neuron-specific enolase in mouse spinal neurons grown in tissue culture.Brain Research 181, 391–400.PubMedGoogle Scholar
  44. Schmechel, D. E., Brightman, M. W. &Marangos, P. J. (1980b) Neurons switch from non-neuronal enolase to neuron-specific enolase during differentiation.Brain Research 190, 195–214.PubMedGoogle Scholar
  45. Silver, P. A. (1991) How proteins enter the nucleus.Cell 64, 489–97.PubMedGoogle Scholar
  46. Silverman, W. F. (1992) Neuron-specific enolase reflects metabolic activity in mesencephalic neurons of the rat.Brain Research 577, 276–84.PubMedGoogle Scholar
  47. Singh, R. &Green, M. R. (1993) Sequence-specific binding of transfer RNA by glyceraldehyde-3-phosphate dehydrogenase.Science 259, 365–8.PubMedGoogle Scholar
  48. Stennert, E. (1979) I. Hypoglossal facial anastomosis: its significance for modern facial surgery. II. Combined approach in extratemporal facial nerve reconstruction.Clinical Plastic Surgery 6, 471–86.Google Scholar
  49. Streit, W. J., Dumoulin, F. L., Raivich, G. &Kreutzberg, G. W. (1989) Calcitonin gene-related peptide increases in facial motoneurons after peripheral nerve transection.Neuroscience Letters 101, 143–8.Google Scholar
  50. Takei, N., Kondo, J., Nagaike, K., Ohsawa, K., Kato, K. &Kohsaka, S. (1991) Neuronal survival factor from bovine brain is identical to neuron-specific enolase.Journal of Neurochemistry 57, 1178–84.PubMedGoogle Scholar
  51. Tetzlaff, W. &Kreutzberg, G. W. (1985) Ornithine decarboxylase in motoneurons during regeneration.Experimental Neurology 89, 679–88.PubMedGoogle Scholar
  52. Tetzlaff, W., Bisby, M. A. &Kreutzberg, G. W. (1988) Changes in cytoskeletal proteins in the rat facial nucleus following axotomy.Journal of Neuroscience 8, 3181–9.Google Scholar
  53. Van Noorden, S., Polak, J. M., Robinson, M., Pearse, A. G. E. &Marangos, P. J. (1984) Neuron-specific enolase in the pituitary gland.Neuroendocrinology 38, 309–16.PubMedGoogle Scholar
  54. Yu, W.-H. A. (1988) Sex difference in neuronal loss induced by axotomy in the rat brain stem motor nuclei.Experimental Neurology 102, 230–5.PubMedGoogle Scholar

Copyright information

© Chapman and Hall 1994

Authors and Affiliations

  • D. N. Angelov
    • 1
  • W. F. Neiss
    • 1
  • A. Gunkel
    • 2
  • O. Guntinas-Lichius
    • 1
  • E. Stennert
    • 2
  1. 1.Institut I für AnatomieNasen- und Ohrenheilkunde der Universität zu KölnLindenthalGermany
  2. 2.Klinik für Hals-, Nasen- und Ohrenheilkunde der Universität zu KölnLindenthalGermany

Personalised recommendations