Decreasing rearranged Fourier series

  • T. W. Körner


There exists a continuous function whose Fourier sum, when taken in decreasing order of magnitude of the coefficients, diverges unboundedly almost everywhere.

Math subject classifications

Primary: 42A20 Secondary 42C20 

Keywords and phrases

divergence of Fourier series rearrangement of Fourier series 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Feller, W. (1968). An Introduction to Probability Theory and its Applications, 3rd ed., John Wiley & Sons, New York.Google Scholar
  2. [2]
    Kahane, J.-P. (1980). Sur les polynômes à coefficients unimodulaires,Bull. London Math. Soc.,12, 321–342.Google Scholar
  3. [3]
    Körner, T.W. (1996). Divergence of decreasing rearranged Fourier series,Annals Maths.,144, 167–180.Google Scholar
  4. [4]
    Körner, T.W. (1996). Olevskii and the divergence of rearranged series. InA conference in memory of S. Pichoredes in the Orsay seminar series,96-01.Google Scholar
  5. [5]
    Olevskii, A.M. (1975). Fourier Series with Respect to General Orthogonal Systems, Springer-Verlag, Berlin.Google Scholar
  6. [6]
    Rényi, A. (1970). Probability Theory, North Holland.Google Scholar
  7. [7]
    Tao, T. (1966). On the almost everywhere convergence of wavelet summation methods.Applied and Computational Harmonic Analysis,3(4), 384–387.Google Scholar

Copyright information

© Birkhäuser 1999

Authors and Affiliations

  • T. W. Körner
    • 1
  1. 1.DPMMSCambridge

Personalised recommendations