Advertisement

Decreasing rearranged Fourier series

  • T. W. Körner
Article

Abstract

There exists a continuous function whose Fourier sum, when taken in decreasing order of magnitude of the coefficients, diverges unboundedly almost everywhere.

Math subject classifications

Primary: 42A20 Secondary 42C20 

Keywords and phrases

divergence of Fourier series rearrangement of Fourier series 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Feller, W. (1968). An Introduction to Probability Theory and its Applications, 3rd ed., John Wiley & Sons, New York.Google Scholar
  2. [2]
    Kahane, J.-P. (1980). Sur les polynômes à coefficients unimodulaires,Bull. London Math. Soc.,12, 321–342.Google Scholar
  3. [3]
    Körner, T.W. (1996). Divergence of decreasing rearranged Fourier series,Annals Maths.,144, 167–180.Google Scholar
  4. [4]
    Körner, T.W. (1996). Olevskii and the divergence of rearranged series. InA conference in memory of S. Pichoredes in the Orsay seminar series,96-01.Google Scholar
  5. [5]
    Olevskii, A.M. (1975). Fourier Series with Respect to General Orthogonal Systems, Springer-Verlag, Berlin.Google Scholar
  6. [6]
    Rényi, A. (1970). Probability Theory, North Holland.Google Scholar
  7. [7]
    Tao, T. (1966). On the almost everywhere convergence of wavelet summation methods.Applied and Computational Harmonic Analysis,3(4), 384–387.Google Scholar

Copyright information

© Birkhäuser 1999

Authors and Affiliations

  • T. W. Körner
    • 1
  1. 1.DPMMSCambridge

Personalised recommendations