Advertisement

Educational Studies in Mathematics

, Volume 26, Issue 2–3, pp 275–298 | Cite as

Negotiation of mathematical meaning and learning mathematics

  • Jörg Voigt
Article

Abstract

The teaching-learning process is considered as a social interaction. In this microethno-graphical case study an elementary teacher and first graders are observed when they ascribe mathematical meanings of numbers and of numerical operations to empirical phenomena. Because of the differences of their ascriptions, the teacher and the students negotiate mathematical meanings. Also interactional regularities help the participants to cope with ambiguity. According to different theoretical approaches, the text discusses some indirect relations between social interaction and mathematics learning. Several classrooms episodes are interpreted to illustrate specific theoretical concepts.

Keywords

Social Interaction Theoretical Approach Theoretical Concept Elementary Teacher Learning Mathematic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andelfinger, B. and Voigt, J.: 1986, ‘ Vorführstunden und alltäglicher Mathematikunterricht — Zur Ausbildung von Referendaren im Fach Mathematik (S I/S II)’,Zentralblatt für Didaktik der Mathematik 1, 2–9.Google Scholar
  2. Balacheff, N.: 1986, ‘Cognitive versus situational analysis of problem-solving behaviors’,For the Learning of Mathematics 6(3), 10–12.Google Scholar
  3. Balacheff, N. and Laborde, C.: 1988, ‘Social interactions for experimental studies of pupils' conceptions: Its relevance for research in didactics of mathematics’, in: H.-G. Steiner and A. Vermandel (eds.),Foundations and Methodology of the Discipline Mathematics Education. Proceedings of the 2nd TME-Conference, IDM, Bielefeld, pp. 189–195.Google Scholar
  4. Bartolini-Bussi, M.: 1990, ‘Mathematics knowledge as a collective enterprise’, in:Proceedings of the 4th SCTP Conference in Brakel, West Germany, IDM, Bielefeld, 121–151.Google Scholar
  5. Bauersfeld, H.: 1980, ‘Hidden dimensions in the so-called reality of a mathematics classroom’,Educational Studies in Mathematics 11, 23–41.Google Scholar
  6. Bauersfeld, H.: 1982, ‘Analysen zur Kommunikation im Mathematikunterricht’, in H. Bauersfeld et al. (ed.),Analysen zum Unterrichtshandeln, Aulis, Köln, pp. 1–40.Google Scholar
  7. Bauersfeld, H.: 1988, ‘Interaction, construction, and knowledge — Alternative perspectives for mathematics education', in T. Cooney and D. Grouws (eds.),Effective Mathematics Teaching, N.C.T.M., Reston/Virginia, pp. 27–46.Google Scholar
  8. Bauersfeld, H. and Krummheuer, G., and Voigt, J.: 1988, ‘Interactional theory of learning and teaching mathematics and related microethnographical studies’, in H.-G. Steiner and A. Vermandel (eds.),Foundations and Methodology of the Discipline Mathematics Education, Antwerp, 174–188.Google Scholar
  9. Bishop, A. J. and Geoffree, F.: 1986, ‘Classroom organisation and dynamics’, in B. Christiansen, A. G. Howsen, and M. Otte (eds.),Perspectives on Mathematics Education, Reidel, Dordrecht, 309–365.Google Scholar
  10. Blumer, H.: 1969,Symbolic Interactionism: Perspective and Method, Prentice-Hall, Englewood Cliffs.Google Scholar
  11. Brousseau, G.: 1983, ‘Les obstacles épist émologiques et les problèmes en mathématiques’,Recherches en didactique des mathématiques 2, 164–197.Google Scholar
  12. Bruner, J.: 1966, ‘Some elements of discovery’, in L. S. Shulman and E. R. Keisler (eds.),Learning by Discovery: A Critical Appraisal, Rand McNally, Chicago, 101–113.Google Scholar
  13. Bruner, J.: 1976, ‘Early rule structure: The case of peek-a-boo’, in R. Harré (ed.),Life Sentences, Wiley and Sons, London.Google Scholar
  14. Bruner, J.: 1986,Actual Minds, Possible Worlds, Harvard University Press, Cambridge/Mass.Google Scholar
  15. Carraher, T. N., Carraher, D. W., and Schliemann, A. D.: 1985, ‘Mathematics in the streets and in schools’,British Journal of Developmental Psychology 3, 21–29.Google Scholar
  16. Cobb, P.: 1990, ‘Multiple perspectives’, in L. P. Steffe and T. Wood (eds.),Transforming Children's Mathematical Education: International Perspectives, Lawrence Erlbaum Association, Hillsdale, N.J., 200–215.Google Scholar
  17. Cobb, P., Wood, T., and Yackel, E.: 1991, ‘A constructivist approach to second grade mathematics’, in E. von Glasersfeld (ed.),Constructivism in Mathematics Education, Kluwer, Dordrecht, 157–176.Google Scholar
  18. Doise, W. and Mugny, G.: 1984,The Social Development of the Intellect, Pergamon, Oxford.Google Scholar
  19. duBois-Reymond, M. and Söll, B.: 1974,Neuköllner Schulbuch, 2. Band, Suhrkamp, Frankfurt/M.Google Scholar
  20. Edwards, D. and Mercer, N.: 1987,Common Knowledge. The Development of Understanding in the Classroom, Methuen, London.Google Scholar
  21. Falk, G. and Steinert, H.: 1973, ‘ Über den Soziologen als Konstrukteur von Wirklichkeit, das Wesen der sozialen Realität, die Definition sozialer Situationen und die Strategien ihrer Bew ältigung’, in H. Steinert (ed.),Symbolische Interaktion. Arbeiten zu einer reflexiven Soziologie, Klett, Stuttgart, pp. 13–46.Google Scholar
  22. Garfinkel, H.: 1967,Studies in Ethnomethodology, Prentice-Hill, New Jersey.Google Scholar
  23. Goffman, E.: 1974,Frame Analysis —An Essay on the Organization of Experience, Harvard University Press, Cambridge.Google Scholar
  24. Griffin, P. and Mehan, H.: 1981, ‘ Sense and ritual in classroom discourse’, in F. Coulmas (ed.),Conversational Routine, Mounton, The Hague, pp. 187–214.Google Scholar
  25. Harré, R.: 1984,Personal Beeing. A Theory for Individual Psychology, Harvard University Press, Cambridge.Google Scholar
  26. Jungwirth, H.: 1991, ‘Interaction and gender — findings of a microethnographical approach to classroom discourse’,Educational Studies in Mathematics 22, 263–284.Google Scholar
  27. Krummheuer, G.: 1983,Algebraische Termumformungen in der Sekundarstufe I — Abschlußbericht eines Forschungsprojektes, Materialien und Studien Bd. 31, IDM, Bielefeld.Google Scholar
  28. Krummheuer, G.: 1991, ‘Argumentationsformate im Mathematikunterricht’, in H. Maier and J. Voigt (eds.),Interpretative Unterrichtsforschung, Aulis, Köln, 57–78.Google Scholar
  29. Kumagai, K.: 1988, ‘Research on the ‘sharing process’ in the mathematics classroom — An attempt to construct a mathematics classroom’,Tsukaba Journal of Educational Study in Mathematics Japan 7, 247–257.Google Scholar
  30. Lakatos, J.: 1976,Proofs and Refutations — The Logic of Mathematical Discovery, Cambridge University Press, London.Google Scholar
  31. Lampert, M.: 1990, ‘Connecting inventions with conventions’, in L. P. Steffe and T. Wood (eds.),Transforming Children's Mathematics Education, Lawrence Erlbaum, Hillsdale/N.J., 253–265.Google Scholar
  32. Leiter, K.: 1980,A Primer on Etnomethodology, Oxford University Press, New York.Google Scholar
  33. Maier, H. and Voigt, J.: 1989, ‘ Die entwickelnde Lehrerfrage im Mathematikunterricht, Teil I’,Mathematica Didactica 12, 23–55.Google Scholar
  34. Maier, H. and Voigt, J.: 1992, ‘Teaching styles in mathematics education’,Zentralblatt für Didaktik der Mathematik 7, 249–253.Google Scholar
  35. McNeal, M. G.: 1991,The Social Context of Mathematical Development, Doctoral dissertation, Purdue University.Google Scholar
  36. Mead, G. H.: 1934,Mind, Self and Society, University of Chicago Press, Chicago.Google Scholar
  37. Mehan, H.: 1979,Learning Lessons, Harvard University, Cambridge.Google Scholar
  38. Neth, A. and Voigt, J.: 1991, ‘Lebensweltliche Inszenierungen. Die Aushandlung schulmathemati-scher Bedeutungen an Sachaufgaben’, in H. Maier and J. Voigt (eds.),Interpretative Unterrichtsforschung, Aulis, Köln, 79–116.Google Scholar
  39. Perret-Clermont, A.-N.: 1980,Social Interaction and Cognitive Development in Children, Academic Press, London.Google Scholar
  40. Saxe, G. B.: 1990,Culture and Cognitive Development: Studies in Mathematical Understanding, Lawrence Erlbaum, Hillsdale, N.J.Google Scholar
  41. Schubring, G.: 1988, ‘Historische Begriffsentwicklung und Lernprozeß aus der Sicht neuerer mathematikdidaktischer Konzeptionen (Fehler, obstacles, Transposition)’,Zentralblatt für Didaktik der Mathematik 20, 138–148.Google Scholar
  42. Solomon, Y.: 1989,The Practice of Mathematics, Routledge, London.Google Scholar
  43. Steffe, L. P., von Glasersfeld, E., Richards, J., and Cobb, P.: 1983,Children's Counting Types: Philosophy, Theory, and Application, Praeger Scientific, New York.Google Scholar
  44. Steinbring, H.: 1991, ‘Mathematics in teaching processes. The disparity between teacher and student knowledge’,Recherches en didactique des mathématiques 11 (1), 65–108.Google Scholar
  45. Steinbring, H.: 1993, ‘The relation between social and conceptual conventions in everyday mathematics teaching’, in L. Bazzini and H.-G. Steiner (eds.),Proceedings of the Second Italian-German Bilateral Symposium on Didactics of Mathematics (in press).Google Scholar
  46. Struve, H.: 1990, ‘Analysis of didactical developments on the basis of rational reconstructions’,Proceedings of the BISME-2, Bratislava, 99–119.Google Scholar
  47. Struve, R. and Voigt, J.: 1988, ‘ Die Unterrichtsszene im Menon-Dialog — Analyse und Kritik auf dem Hintergrund von Interaktionsanalysen des heutigen Mathematikunterrichts’,Journal für Mathematik-Didaktik 9(4), 259–285.Google Scholar
  48. Voigt, J.: 1985, ‘Pattern und routines in classroom interaction’,Recherches en Didactique des Math ématiques 6(1), 69–118.Google Scholar
  49. Voigt, J.: 1989, ‘Social functions of routines and consequences for subject matter learning’,International Journal of Educational Research 13(6), 647–656.Google Scholar
  50. Voigt, J.: 1990, ‘The microethnographical investigation of the interactive constitution of mathematical meaning’,Proceedings of the 2nd Bratislava International Symposium on Mathematics Education, 120–143.Google Scholar
  51. Voigt, J.: 1991, ‘Interaktionsanalysen in der Lehrerfortbildung’,Zentralblatt für Didaktik der Mathematik 5, 161–168.Google Scholar
  52. von Glasersfeld, E.: 1987,Wissen, Sprache und Wirklichkeit. Arbeiten zum radikalen Konstruktivismus, Vieweg, Braunschweig.Google Scholar
  53. Vygotsky, L. S.: 1978,Mind in Society, Harvard University, Cambridge, MA.Google Scholar
  54. Vygotsky, L. S.: 1981, ‘The genesis of higher mental functions’, in J. V. Wertsch (ed.),The Concept of Activity in Soviet Psychology, Sharpe, Armonk.Google Scholar
  55. Walkerdine, V.: 1988,The Mastery of Reason, Routledge, London.Google Scholar
  56. Walther, G.: 1982, ‘Acquiring mathematical knowledge’,Mathematics Teaching 101, 10–12.Google Scholar
  57. Wittgenstein, L.: 1967,Remarks on the Foundations of Mathematics, Blackwell, Oxford.Google Scholar
  58. Wittmann, E. Ch. and Müller, G. N.: 1990,Handbuch produktiver Rechenilbungen, Band 1., Klett, Stuttgart.Google Scholar
  59. Wood, T. and Yackel, E.: 1990, ‘The development of collaborative dialogue in small group interactions’, in L. P. Steffe and T. Wood (eds.),Transforming Children's Mathematics Education, Lawrence Erlbaum Association, Hillsdale, N.J., 200–215.Google Scholar
  60. Yackel, E., Cobb, P., Wood, T., Wheatley, G., and Merkel, G.: 1990, ‘The importance of social interaction in children's construction of mathematical knowledge’, in T. J. Cooney (ed.),Teaching and Learning Mathematics in the 1990's, NCTM, Reston, pp. 12–21.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Jörg Voigt
    • 1
  1. 1.Fachbereich ErziehungswissenschaftUniversität HamburgHamburg 13Germany

Personalised recommendations