Archiv der Mathematik

, Volume 66, Issue 2, pp 150–156 | Cite as

Galois module structure of holomorphic differentials in characteristicp

  • Martha Rzedowski-Calderón
  • Gabriel Villa-Salvador
  • Manohar L. Madan
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Boseck, Zur Theorie der Weierstraßpunkte. Math. Nachr.19, 29–63 (1958).Google Scholar
  2. [2]
    C. Chevalley andA. Weil, Über das Verhalten der Integrale 1. Gattung bei Automorphismen des Funktionenkörpers. Abh. Math. Sem. Univ. Hamburg10, 358–361 (1934).Google Scholar
  3. [3]
    A. Garcia, On Weierstrass Points on Certain Elementary Abelian Extensions ofk(x). Comm. Algebra17, 3025–3032 (1989).Google Scholar
  4. [4]
    A. Garcia andH. Stichtenoth, Elementary Abelianp-Extensions of Algebraic Function Fields. Manuscripta Math.72, 67–79 (1991).Google Scholar
  5. [5]
    E. Kani, The Galois-module structure of the space of holomorphic differentials of a curve. J. Reine Angew. Math.367, 187–206 (1986).Google Scholar
  6. [6]
    S. Nakajima, Galois Module Structure of Cohomology Groups for Tamely Ramified Coverings of Algebraic Varieties. J. Number Theory22, 115–123 (1986).Google Scholar
  7. [7]
    R. C. Valenttni, Representation of automorphisms on differentials of function fields of characteristicp. J. Reine Angew. Math.335, 164–179 (1982).Google Scholar
  8. [8]
    R. C. Valentini andM. L. Madan, Automorphisms and Holomorphic Differentials in Characteristicp. J. Number Theory13, 106–115 (1981).Google Scholar

Copyright information

© Birkhäuser Verlag 1996

Authors and Affiliations

  • Martha Rzedowski-Calderón
    • 1
  • Gabriel Villa-Salvador
    • 1
  • Manohar L. Madan
    • 2
  1. 1.Departamento de MatemáticasCentre de Investigatión y de Estudios Avanzados del I.P.N.México, D. F.Mexico
  2. 2.Department of MathematicsOhio State UniversityColumbusUSA

Personalised recommendations