Advertisement

Protoplasma

, Volume 194, Issue 1–2, pp 29–39 | Cite as

Atomic force microscopy of pollen grains, cellulose microfibrils, and protoplasts

  • N. N. van der Wel
  • C. A. J. Putman
  • S. J. T. van Noort
  • B. G. de Grooth
  • A. M. C. Emons
Article

Summary

Atomic force microscopy (AFM) holds unique prospects for biological microscopy, such as nanometer resolution and the possibility of measuring samples in (physiological) solutions. This article reports the results of an examination of various types of plant material with the AFM. AFM images of the surface of pollen grains ofKalanchoe blossfeldiana andZea mays were compared with field emission scanning electron microscope (FESEM) images. AFM reached the same resolutions as FESEM but did not provide an overall view of the pollen grains. Using AFM in torsion mode, however, it was possible to reveal differences in friction forces of the surface of the pollen grains. Cellulose microfibrils in the cell wall of root hairs ofRaphanus sativus andZ. mays were imaged using AFM and transmission electron microscopy (TEM). Imaging was performed on specimens from which the wall matrix had been extracted. The cell wall texture of the root hairs was depicted clearly with AFM and was similar to the texture known from TEM. It was not possible to resolve substructures in a single microfibril. Because the scanning tip damaged the fragile cells, it was not possible to obtain images of living protoplasts ofZ. mays, but images of fixed and dried protoplasts are shown. We demonstrate that AFM of plant cells reaches resolutions as obtained with FESEM and TEM, but obstacles still have to be overcome before imaging of living protoplasts in physiological conditions can be realized.

Keywords

Atomic force microscope Cell wall texture Cellulose microfibrils Pollen grains Protoplasts 

Abbreviations

AFM

atomic force microscope

FESEM

field emission scanning electron microscope

PyMS

pyrolysis mass spectrometry

TEM

transmission electron microscope

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander S, Hellemans L, Marti O, Schneir J, Elings V, Hansma PK, Longmire M, Gurley J (1989) An atomic-resolution atomic- force microscope implemented using an optical lever. J Appl Phys 65: 164–167Google Scholar
  2. Binnig G, Rohrer H, Gerber C, Weibel E (1982) Surface studies with scanning tunneling microscopy. Phys Rev Lett 49: 57–61Google Scholar
  3. —, Quate CF, Gerber C (1986) The atomic force microscope. Phys Rev Lett 56: 930–933Google Scholar
  4. Bustamante C, Keller D, Yang G (1993) Scanning force microscopy of nucleic acids and nucleoprotein assemblies. Curr Opin Struct Biol 3: 363–372Google Scholar
  5. Butt HJ, Wolff EK, Gould SAC, Dixon Northern B, Peterson CM, Hansma PK (1990) Imaging cells with the atomic force microscope. J Struct Biol 105: 54–61Google Scholar
  6. Cooper JB, Heuser JE, Varner JE (1994) 3,4-Dehydroproline inhibits cell wall assembly and cell division in tobacco protoplasts. Plant Physiol 104: 747–753Google Scholar
  7. Cresti M, Blackmore S, Van Went JL (1992) Atlas of sexual reproduction in flowering plants. Springer, Berlin Heidelberg New York TokyoGoogle Scholar
  8. Driessen MNBM, Derksen JWM, Spieksma FTM, Roetman E (1988) Pollenatlas van de Nederlandse atmosfeer. Fisons Pharmaceuticals BV, LeusdenGoogle Scholar
  9. Droz E, Taborelli M, Wells NC, Descouts P (1993) Preparation of isolated biomolecules for SFM observations: T4 bacteriophage as a test sample. Biophys J 65: 1180–1187Google Scholar
  10. Emons AMC (1988) Methods for visualizing cell wall texture. Acta Bot Neerl 37: 31–38Google Scholar
  11. —, (1991) Role of particle rosettes and terminal globules in cellulose synthesis. In: Haigler CH, Weimer PJ (eds) Biosynthesis and biodegradation of cellulose. Marcel Dekker, New York, pp 71–98Google Scholar
  12. —, Kieft H (1991) Histological comparison of single somatic embryos of maize from suspension culture with somatic embryos attached to callus cells. Plant Cell Rep 10: 485–488Google Scholar
  13. — — (1994) Winding threads around plant cells: applications of the geometrical model for microfibril deposition. Protoplasma 180: 59–69Google Scholar
  14. —, Wolters-Arts AMC (1983) Cortical microtubules and microfibril deposition in the cell wall of root hairs ofEquisetum hyemale. Protoplasma 117: 68–81Google Scholar
  15. —, Mulder MM, Kieft H (1993) Pyrolysis mass spectrometry of developmental stages of maize somatic embryos. Acta Bot Neerl 42: 319–339Google Scholar
  16. Fry SC (1988) The growing plant cell wall; chemical metabolic analyses. Longman, New YorkGoogle Scholar
  17. Gunning AP, McMaster TJ, Morris VJ (1993) Scanning tunneling microscopy of xanthan gum. Carbohydr Polymer 21: 47–51Google Scholar
  18. Häberle W, Hörber JKH, Binnig G (1991) Force microscopy on living cells. J Vac Sci Technol B 9: 1210–1213Google Scholar
  19. Hanley SJ, Giasson J, Revol JF, Gray DG (1992) Atomic force microscopy of cellulose microfibrils: comparison with transmission electron microscopy. Polymer 33: 4639–4642Google Scholar
  20. Hansma HG, Vesenka J, Siegerist C, Kelderman G, Morrett H, Sinsheimer RL, Elings V, Bustamante C, Hansma PK (1992) Reproducible imaging and dissection of plasmid DNA under liquid with the atomic force microscope. Science 256: 1180–1184Google Scholar
  21. —, Sinsheimer RL, Groppe J, Bruice TC, Elings V, Gurley G, Benzanilla M, Mastrangelo IA, Hough PVC, Hansma PK (1993) Recent advances in atomic force microscopy of DNA. Scanning 15: 296–299Google Scholar
  22. Hansma PK, Cleveland JP, Radmacher M, Walters DA, Hillner PE, Bezanilla M, Fritz M, Vie D, Hansma HG, Prater CB, Massie J, Fukunana L, Gurley J, Elings V (1994) Tapping mode atomic force microscopy in liquids. Appl Phys Lett 64: 1738–1740Google Scholar
  23. Henderson E, Haydon PG, Sakaguchi DS (1992) Actin filament dynamics in living glial cells imaged by atomic force microscopy. Science 257: 1944–1946Google Scholar
  24. Hoh JH, Hansma PK (1992) Atomic force microscopy for high-resolution imaging in cell biology. Trends Cell Biol 2: 208–213Google Scholar
  25. —, Lal R, John SA, Revel JP, Arnsdorf MF (1991) Atomic force microscopy and dissection of gap junctions. Science 253: 1405–1408Google Scholar
  26. Ikonomovic MD, Armstrong DM, Yen SH, Obcemea C, Vidic B (1995) Atomic force microscopy of paired helical filaments isolated from the autopsied brains of patients with Alzheimer's disease and immunolabeled against microtubule-associated protein Tau. Am J Pathol 147: 516–528Google Scholar
  27. Iwanami Y, Sasakuma T, Yamada Y (1988) Pollen: illustrations and scanning electron micrographs. Kodansha, Tokyo, Springer, Berlin Heidelberg New York TokyoGoogle Scholar
  28. Keller DJ, Chih-Chung C (1992) Imaging steep, high structures by scanning force microscopy with electron beam deposited tips. Surface Sci 268: 333–339Google Scholar
  29. Kuga S, Brown RM (1991) Physical structure of cellulose microfibrils: implications for biogenesis. In: Haigler CH, Weimer PJ (eds) Biosynthesis and biodegradation of cellulose. Marcel Dekker, New York, pp 125–142Google Scholar
  30. Meyer G, Amer NM (1988) Novel optical approach to atomic force microscopy. Appl Phys Lett 53: 2400–2402Google Scholar
  31. Müller WH, Van Aelst AC, Van der Krift TP, Boekhout T (1994) Scanning electron microscopy of the septal pore cap of the basidiomyceteSchizophyllum commune. Can J Microbiol 40: 879–883Google Scholar
  32. Overney MR, Meyer E, Frommer J, Brodbeck D, Lüthi R, Howald L, Güntherodt HJ, Fujihira M, Takano H, Gotoh Y (1992) Friction measurements on phase-separated thin films with a modified atomic force microscope. Nature 359: 133–135Google Scholar
  33. Parpura V, Haydon PG, Henderson E (1993) Three dimensional imaging of living neurons and glia with the atomic force microscope. J Cell Sci 104: 427–432Google Scholar
  34. Pidduck A (1993) Applications of the atomic force microscope. Proc R Microsc Soc 28: 133–138Google Scholar
  35. Putman CAJ (1994) Tapping atomic force microscopy in liquid. Appl Phys Lett 64: 2454–2456Google Scholar
  36. —, van der Werf KO, de Grooth BG, van Hulst NF, Greve J, Hansma PK (1992) A new imaging mode in atomic force microscopy based on the error signal. Soc Photo Opt Eng Proc 1639: 198–204Google Scholar
  37. —, Dietrich AJJ, de Grooth BG, van Marie J, Heyting C, van Hulst NF, Greve J (1993a) An atomic force microscopical study of the synaptonemal complex. Micron 24: 273–277Google Scholar
  38. —, De Grooth BG, Hansma PK, Van Hulst NF, Greve J (1993b) Immunogold labels: cell-surface markers in atomic force microscopy. Ultramicroscopy 48: 177–182Google Scholar
  39. Roberts CJ, Williams PM, Davies MC, Jackson DE, Tendier SJB (1994) Atomic force microscopy and scanning tunneling microscopy: refining techniques for studying biomolecules. Trends Biotechnol 12: 127–132Google Scholar
  40. Ruben GC (1987) Triple-stranded, left-hand-twisted cellulose microfibril. Carbohydr Res 160: 434–443Google Scholar
  41. Russ JC (1993) Effects of noise and anisotropy on the determination of fractal dimensions. J Microsc 172: 239–248Google Scholar
  42. Sassen MMA, Traas JA, Wolters-Arts AMC (1985) Deposition of cellulose microfibrils in cell walls of root hairs. Eur J Cell Biol 37: 21–26Google Scholar
  43. Tomie T, Shimizu H, Majima T, Yamada M, Kanayama T, Kondo H, Yano M, Ono M (1991) Three-dimensional readout of flash X- ray images of living sperm in water by atomic-force microscopy. Science 252: 691–693Google Scholar
  44. Van Cullen DC, McKerr G, Hughes EM (1993) Biological applications for SPM. Eur Microsc Anal 1993/Sept: 29–31Google Scholar
  45. Van der Werf KO, Putman CAJ, De Grooth, Segerink FB, Schipper EH, Van Hulst NF, Greve J (1993) Compact stand-alone atomic force microscope. Rev Sci Instr 64: 2892–2897Google Scholar
  46. Vesenka J, Guthold M, Tang CL, Keller D, Delaine E, Bustamante C (1992) A substrate preparation for reliable imaging of DNA molecules with the scanning force microscope. Ultramicroscopy 42-44: 1243–1249Google Scholar
  47. —, Mosher C, Schaus S, Ambrosio L, Henderson E (1995) Combining optical and atomic force microscopy for life science research. Biotechnology 19: 240–253Google Scholar
  48. Weisenhorn AL, Drake B, Prater CB, Gould SAC, Hansma PK, Ohnesorge F, Egger M, Heyn SP, Gaub HE (1990) Immobilized proteins in buffer imaged at molecular resolution by atomic force microscopy. Biophys J 58: 1251–1258Google Scholar
  49. Xu S, Arnsdorf MF (1994) Calibration of the scanning (atomic) force microscope with gold particles. J Microsc 173: 199–210Google Scholar
  50. Yang J, Shao (1995) Recent advances in biological atomic force microscopy. Micron 26: 35–49Google Scholar
  51. —, Tamm LK, Somlyo AP, Shao Z (1993) Promises and problems of biological atomic force microscopy. J Microsc 171: 183–198Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • N. N. van der Wel
    • 1
  • C. A. J. Putman
    • 2
  • S. J. T. van Noort
    • 2
  • B. G. de Grooth
    • 2
  • A. M. C. Emons
    • 1
  1. 1.Department of Plant Cytology and MorphologyWageningen Agricultural UniversityDB WageningenThe Netherlands
  2. 2.Department of Applied PhysicsUniversity of TwenteEnschede

Personalised recommendations