computational complexity

, Volume 2, Issue 3, pp 187–224 | Cite as

Computing Frobenius maps and factoring polynomials

  • Joachim von zur Gathen
  • Victor Shoup


A new probabilistic algorithm for factoring univariate polynomials over finite fields is presented. To factor a polynomial of degreen overF q , the number of arithmetic operations inF q isO((n2+nlogq). (logn)2 loglogn). The main technical innovation is a new way to compute Frobenius and trace maps in the ring of polynomials modulo the polynomial to be factored.

Subject classifications

68Q40 11Y16 12Y05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. A. V. Aho, J. E. Hopcroft, and J. D. Ullman.The Design and Analysis of Computer Algorithms. Addison-Wesley, 1974.Google Scholar
  2. A. Arwin. Über Kongruenzen von dem fünften und höheren Graden nach einem Primzahlmodulus.Arkiv för matematik, astronomi o. fysik 14 (1918), 1–46.Google Scholar
  3. L. Babai, E. M. Luks, and Á. Seress. Fast management of permutation groups. In29th Annual Symposium on Foundations of Computer Science, 272–282, 1988.Google Scholar
  4. W. Baur and V. Strassen. The complexity of computing partial derivatives.Theoret. Comput. Sci. 22 (1983), 317–330.Google Scholar
  5. M. Ben-Or. Probabilistic algorithms in finite fields. In22nd Annual Symposium on Foundations of Computer Science, 394–398, 1981.Google Scholar
  6. E. R. Berlekamp.Algebraic Coding Theory. McGraw-Hill, 1968.Google Scholar
  7. E. R. Berlekamp. Factoring polynomials over large finite fields.Math. Comp. 24 (1970), 713–735.Google Scholar
  8. A. Borodin and I. Munro.The Computational Complexity of Algebraic and Numeric Problems. American Elsevier, 1975.Google Scholar
  9. R. P. Brent and H. T. Kung. Fast algorithms for manipulating formal power series.J. Assoc. Comput. Mach. 25 (1978), 581–595.Google Scholar
  10. J. Buchmann. Complexity of algorithms in algebraic number theory. InNumber Theory. Proc. First Conf. Canadian Number Theory Assoc., 37–53. Walter de Gruyter, 1990.Google Scholar
  11. M. C. R. Butler. On the reducibility of polynomials over a finite field.Quart. J. Math., Oxford Ser. (2)5 (1954), 102–107.Google Scholar
  12. P. Camion. Improving an algorithm for factoring polynomials over a finite field and constructing large irreducible polynomials.IEEE Trans. Inform. Theory IT-29 (1983), 378–385.Google Scholar
  13. J. F. Canny, E. Kaltofen, and L. Yagati. Solving systems of non-linear polynomial equations faster. InProc. Int. Symp. on Symbolic and Algebraic Comp., 121–128, 1989.Google Scholar
  14. D. G. Cantor and E. Kaltofen. On fast multiplication of polynomials over arbitrary algebras.Acta. Inf. 28 (1991), 693–701.Google Scholar
  15. D. G. Cantor and H. Zassenhaus. A new algorithm for factoring polynomials over finite fields.Math. Comp. 36 (1981), 587–592.Google Scholar
  16. D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions.J. Symb. Comp. 9 (1990), 23–52.Google Scholar
  17. T. H. Cormen, C. E. Leiserson, and R. L. Rivest.Introduction to algorithms. MIT Press, 1989.Google Scholar
  18. J. von zur Gathen. Irreducibility of multivariate polynomials.J. Computer System Sciences 31 (1985), 225–264.Google Scholar
  19. J. von zur Gathen. Factoring polynomials and primitive elements for special primes.Theoret. Comput. Sci. 52, (1987), 77–89.Google Scholar
  20. J. von zur Gathen and M. Giesbrecht. Constructing normal bases in finite fields.J. Symb. Comp. 10, (1990), 547–570.Google Scholar
  21. J. von zur Gathen and G. Seroussi. Boolean circuits versus arithmetic circuits.Inform. and Comput. 91, (1991), 142–154.Google Scholar
  22. G. H. Hardy and E. M. Wright.An Introduction to the Theory of Numbers. Oxford University Press, fifth edition, 1984.Google Scholar
  23. E. Kaltofen. Polynomial factorization 1982–1986. In Computers in Mathematics,ed. D. V. Chudnovsky, R. D. Jenks, Lecture Notes in Pure and Applied Mathematics, vol. 125, 285–309, 1990.Google Scholar
  24. M. Kaminski, D. G. Kirkpatrick, and N. H. Bshouty. Addition requirements for matrix and transposed matrix products.J. of Algorithms 9 (1988), 354–364.Google Scholar
  25. D. E. Knuth.The Art of Computer Programming, vol. 2. Addison-Wesley, second edition, 1981.Google Scholar
  26. R. Lidl and H. Niederreiter.Finite Fields. Addison-Wesley, 1983.Google Scholar
  27. R. J. McEliece. Factorization of polynomials over finite fields.Math. Comp. 23 (1969), 861–867.Google Scholar
  28. A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Subgroup refinement algorithms for root finding inGF(q).SIAM J. Comput. 21 (1992), 228–239.Google Scholar
  29. M. Mignotte and C. Schnorr. Calcul des racinesd-ièmes dans un corps fini.C. R. Acad. Sci. Paris 290 (1988), 205–206.Google Scholar
  30. R. T. Moenck. On the efficiency of algorithms for polynomial factoring.Math. Comp. 31 (1977), 235–250.Google Scholar
  31. A. M. Odlyzko. Discrete logarithms in finite fields and their cryptographic significance. InAdvances in Cryptology, Proceedings of Eurocrypt 84, 224–314. Springer-Verlag, 1985.Google Scholar
  32. M. O. Rabin. Probabilistic algorithms in finite fields.SIAM J. Comput. 9 (1980), 273–280.Google Scholar
  33. A. Schönhage. Schnelle Multiplikation von Polynomen über Körpern der Charakteristik 2.Acta Inf. 7 (1977), 395–398.Google Scholar
  34. A. Schönhage and V. Strassen. Schnelle Multiplikation großer Zahlen.Computing 7 (1971), 281–292.Google Scholar
  35. V. Shoup. On the deterministic complexity of factoring polynomials over finite fields.Inform. Process. Lett. 33 (1990), 261–267.Google Scholar
  36. V. Shoup. A fast deterministic algorithm for factoring polynomials over finite fields of small characteristic. InProc. Int. Symp. on Symbolic and Algebraic Comp., 14–21, 1991.Google Scholar
  37. V. Shoup. Fast construction of irreducible polynomials over finite fields. InProc. IEEE Symp. on Discrete Algorithms, Austin, TX, 1993.Google Scholar
  38. V. Shoup and R. Smolensky. An algorithm for modular composition. Preprint, 1992.Google Scholar
  39. I. E. Shparlinski.Computational problems in finite fields. Kluwer, 1992. To appear.Google Scholar
  40. V. Strassen. The computational complexity of continued fractions.SIAM J. Comput. 12 (1983), 1–27.Google Scholar
  41. A. Thiong ly. A deterministic algorithm for factorizing polynomials over extensionsGF(p m) ofGF(p), p a small prime.J. of Information and Optimization Sciences 10 (1989), 337–344.Google Scholar
  42. D. Y. Y. Yun. On square-free decomposition algorithms. InProc. ACM Symp. Symbolic and Algebraic Comp., 26–35, 1976.Google Scholar

Copyright information

© Birkhäuser Verlag 1992

Authors and Affiliations

  • Joachim von zur Gathen
    • 1
  • Victor Shoup
    • 1
  1. 1.Department of Computer ScienceUniversity of TorontoTorontoCanada

Personalised recommendations