Advertisement

computational complexity

, Volume 3, Issue 3, pp 207–230 | Cite as

The alternation hierarchy for sublogarithmic space is infinite

  • Burchard von Braunmühl
  • Romain Gengler
  • Robert Rettinger
Article

Abstract

The alternation hierarchy for Turing machines with a space bound between loglog and log is infinite. That applies to all common concepts, especially a) to two-way machines with weak space-bounds, b) to two-way machines with strong space-bounds, and c) to one-way machines with weak space-bounds. In all of these cases the ∑ k -and II k -classes are not comparable fork>-2. Furthermore the ∑ k -classes are not closed under intersection and the II k -classes are not closed under union. Thus these classes are not closed under complementation. The hierarchy results also apply to classes determined by an alternation depth which is a function depending on the input rather than on a constant.

Key words

Alternating Turing machines alternation hierarchy sublogarithmic space 

Subject classifications

68Q10 68Q15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Babai andS. Moran, Arthur-Merlin games: a randomized proof-system, and a hierarchy of complexity classes.J. Comput. System. Sci. 36 (1988), 254–276.Google Scholar
  2. J. L. Balcázar, J. Díaz andJ. Gabarró,Structural Complexity I. Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, 1988.Google Scholar
  3. E. Börger,Computability, Complexity, Logic. North-Holland, Amsterdam, New York, Oxford, Tokyo, 1989.Google Scholar
  4. B. von Braunmühl, Alternationshierarchien von Turingmaschinen mit kleinem Speicher. Informatik Berichte 83, Institut für Informatik, Universität Bonn, 1991.Google Scholar
  5. J. H. Chang, O. H. Ibarra, B. Ravikumar, andL. Berman Some observations concerning Turing machines using small space.Inform. Process. Lett. 25 (1987), 1–9. Erratum,Inform. Process. Lett. 25 (1988) 53.Google Scholar
  6. P. van Emde Boas, Machine models and simulations. InHandbook of Theoretical Computer Science, Volume A, Algorithms and Complexity ed.J. van Leeuwen, 1–66. Elsevier, Amsterdam, New York, Oxford, Tokyo, 1990.Google Scholar
  7. R. Freivalds, On time complexity of deterministic and nondeterministic Turing machines.Latvijski Mathematičeskij Eshegodnik 23 (1979), 158–165. In Russian.Google Scholar
  8. M. R. Garey andD. S. Johnson,Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Fransisco, 1979.Google Scholar
  9. V. Geffert, Nondeterministic computations in sublogarithmic space and space constructibility. InProc. 17 ICALP, Lecture Notes in Computer Science 443, 1990 111–124.Google Scholar
  10. V. Geffert, Tally versions of the Savitch and the Immerman-Szelepcsényi theorems for sublogarithmic space.SIAM J. Comput. 22 (1993), 102–113.Google Scholar
  11. L. A. Hemachandra, The strong exponential hierarchy collapses. InProc. Nineteenth Ann. ACM Symp. Theor. Comput, 1987, 110–122.Google Scholar
  12. N. Immerman, NSPACE is closed under complement.SIAM J. Comput. 17 (1988), 935–938.Google Scholar
  13. A. Ito, K. Inoue, andI. Takanami, A note on alternating Turing machines using small space.The Transactions of the IEICE E 70 no. 10 (1987), 990–996.Google Scholar
  14. K. Iwama, ASPACE(o(log log)) is regular. Research report KSU/ICS Kyoto Sangyo University, Kyoto, 603, Japan, 1986. See alsoSIAM J. Comput 22 (1993), 136–146.Google Scholar
  15. M. Kutylowski, M. Liśkiewicz, andK. Loryś, Reversal complexity classes for alternating Turing machines.SIAM J. Comput. 19 (1990), 207–221.Google Scholar
  16. P. M. Lewis, R. E. Stearns, and J. Hartmanis, Memory bounds for recognition of context-free and context-sensitive languages. InIEEE. Conf. Switch. Circuit Theory and Logic Design, 1965, 191–202.Google Scholar
  17. M. Liśkiewicz and R. Reischuk, Separating the lower levels of the sublogarithmic space hierarchy. InProc. 10.STACS, Lecture Notes in Computer Science 665, 1993a, 16–28.Google Scholar
  18. M. Liśkiewicz and R. Reischuk, The sublogarithmic space hierarchy is infinite. Technical report, Institut für theoretische Informatik, TH Darmstadt, 1993b.Google Scholar
  19. M. Liśkiewicz, K. Loryś, andM. Piotrów On reversal bounded alternating Turing machines.Theoret. Comput. Sci. 54 (1987), 331–339.Google Scholar
  20. W. J. Paul,Komplexitätstheorie. Teubner Studienbücher, Informatik, Stuttgart, 1978.Google Scholar
  21. U. Schöning and K. W. Wagner, Collapsing oracle hierarchies, census functions and logarithmically many queries. InProc. 5th. STACS 88, Lecture Notes in Computer Science 294, 1988, 91–97.Google Scholar
  22. M. Sipser, Halting bounded computations.,Theoret. Comput. Sci. 10 (1980), 335–338.Google Scholar
  23. M. Sipser, Borel sets and circuit complexity. InProc. Fifteenth Ann. ACM Symp. Theor. Comput., 1983, 330–335.Google Scholar
  24. R. Szelepcsényi, The method of forced enumeration for nondeterministic automata.Acta Infor. 26 (1988), 279–284.Google Scholar
  25. K. W. Wagner, The alternation hierarchy for sublogarithmic space: an exciting race to STACS'93 (Editorial note). InProc. 10 STACS, Lecture Notes in Computer Science 665, 1993, 2–4.Google Scholar
  26. K. Wagner andG. Wechsung,Computational Complexity. D. Reidel Publishing Company, Dordrecht, Boston, Lancaster, Tokyo, 1986.Google Scholar

Copyright information

© Birkhäuser Verlag 1993

Authors and Affiliations

  • Burchard von Braunmühl
    • 1
  • Romain Gengler
    • 1
  • Robert Rettinger
    • 1
  1. 1.Institut für Informatik IUniversität BonnBonnGermany

Personalised recommendations