Archive for Mathematical Logic

, Volume 32, Issue 1, pp 1–32 | Cite as

Fuzzy logic and fuzzy set theory

  • Gaisi Takeuti
  • Satoko Titani


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gentzen, G.: Untersuchungen über das logische Schließen. Math. Z.39, 176–210 (1935)Google Scholar
  2. 2.
    Grayson, R.J.: A sheaf approach to models of set theory. Oxford: M. Sc. Thesis 1975Google Scholar
  3. 3.
    Grayson, R.J.: Heyting valued models for intuitionistic set theory. Applications of sheaves (Proceedings of the research symposius, Durham 1981). (Lect. Notes Math., vol 753, pp. 402–414. Berlin Heidelberg New York: Springer 1979Google Scholar
  4. 4.
    Powell, W.C.: Extending Gödel's negative interpretation ofZF. J. Symb. Logic40, 221–229 (1975)Google Scholar
  5. 5.
    Schütte, K.: Proof Theory. Berlin Heidelberg New York: Springer 1977Google Scholar
  6. 6.
    Takeuti, G., Titani, S.: Intuitionistic fuzzy logic and intuitionistic fuzzy set theory. J. Symb. Logic49, 851–866 (1984)Google Scholar
  7. 7.
    Takeuti, G., Titani, S.: Globalization of intuitionistic set theory. Ann. Pure Appl. Logic33, 195–211 (1987)Google Scholar
  8. 8.
    Takeuti, G., Titani, S.: Global intuitionistic fuzzy set theory. The Mathematics of Fuzzy Systems, pp. 291–301 Köln: TÜV-Verlag 1986Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Gaisi Takeuti
    • 1
  • Satoko Titani
    • 2
  1. 1.Department of MathematicsUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Department of MathematicsChubu UniversityKasugai, AichiJapan

Personalised recommendations