Archive for Mathematical Logic

, Volume 32, Issue 1, pp 1–32 | Cite as

Fuzzy logic and fuzzy set theory

  • Gaisi Takeuti
  • Satoko Titani


Fuzzy Logic Mathematical Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gentzen, G.: Untersuchungen über das logische Schließen. Math. Z.39, 176–210 (1935)Google Scholar
  2. 2.
    Grayson, R.J.: A sheaf approach to models of set theory. Oxford: M. Sc. Thesis 1975Google Scholar
  3. 3.
    Grayson, R.J.: Heyting valued models for intuitionistic set theory. Applications of sheaves (Proceedings of the research symposius, Durham 1981). (Lect. Notes Math., vol 753, pp. 402–414. Berlin Heidelberg New York: Springer 1979Google Scholar
  4. 4.
    Powell, W.C.: Extending Gödel's negative interpretation ofZF. J. Symb. Logic40, 221–229 (1975)Google Scholar
  5. 5.
    Schütte, K.: Proof Theory. Berlin Heidelberg New York: Springer 1977Google Scholar
  6. 6.
    Takeuti, G., Titani, S.: Intuitionistic fuzzy logic and intuitionistic fuzzy set theory. J. Symb. Logic49, 851–866 (1984)Google Scholar
  7. 7.
    Takeuti, G., Titani, S.: Globalization of intuitionistic set theory. Ann. Pure Appl. Logic33, 195–211 (1987)Google Scholar
  8. 8.
    Takeuti, G., Titani, S.: Global intuitionistic fuzzy set theory. The Mathematics of Fuzzy Systems, pp. 291–301 Köln: TÜV-Verlag 1986Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Gaisi Takeuti
    • 1
  • Satoko Titani
    • 2
  1. 1.Department of MathematicsUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Department of MathematicsChubu UniversityKasugai, AichiJapan

Personalised recommendations