Advertisement

Communications in Mathematical Physics

, Volume 77, Issue 3, pp 219–228 | Cite as

Algebras of local observables on a manifold

  • J. Dimock
Article

Abstract

We propose a generalization of the Haag-Kastler axioms for local observables to Lorentzian manifolds. The framework is intended to resolve ambiguities in the construction of quantum field theories on manifolds. As an example we study linear scalar fields for globally hyperbolic manifolds.

Keywords

Neural Network Manifold Statistical Physic Field Theory Complex System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fourés-Bruhat, Y.: Propagateurs et solutions d'equations homogénes hyperboliques. C. R. Acad. Sci.251, 29 (1960)Google Scholar
  2. 2.
    Choquet-Bruhat, Y.: Hyperbolic differential equations on a manifold. In: Batelle rencontres (eds. C. De Witt, J. Wheeler). New York: Benjamin 1977Google Scholar
  3. 3.
    De Witt, B.: Quantum field theory in curved space-time. Phys. Rep. 19C 295 (1974)Google Scholar
  4. 4.
    Dimock, J.: Scalar quantum field in an external gravitational field. J. Math. Phys. (N. Y.)20, 2549 (1979)Google Scholar
  5. 5.
    Dyson, F.: Missed opportunities. Bull. Am. Math. Soc.78, 635 (1972)Google Scholar
  6. 6.
    Geroch, R.: The domain of dependence. J. Math. Phys. (N. Y.)11, 437 (1970)Google Scholar
  7. 7.
    Guillemin, V., Sternberg, S.: Geometric asymptotics, Providence, R.I.: Amer. Math. Soc. 1977Google Scholar
  8. 8.
    Haag, R., Kastler, D.: An algebraic approach to quantum field theory. J. Math. Phys.5, 848 (1964)Google Scholar
  9. 9.
    Haag, R., Schroer, S.: Postulates of quantum field theory, J. Math. Phys.3, 248 (1962)Google Scholar
  10. 10.
    Hajicek, P.: Observables for quantum fields on curved backgrounds. In: Differential geometrical methods in mathematical physics II (eds. K. Bleuler, H. Petry, A. Reetz), p. 535. Berlin, Heidelberg, New York: Springer 1978Google Scholar
  11. 11.
    Hawking, S., Ellis, G.: The large scale structure of space-time. Cambridge: Cambridge University Press, 1973Google Scholar
  12. 12.
    Isham, C.: Quantum field theory in curved space-time: a general mathematical framework. In: Differential geometrical methods in mathematical physics II (eds. K. Bleuler, H. Petry, A. Reetz), p. 459. Berlin, Heidelberg, New York: Springer 1978Google Scholar
  13. 13.
    Kay, B.: Linear spin-zero quantum fields in external gravitational and scalar fields: I: Commun. Math. Phys.62, 55 (1978); II: Commun. Math. Phys.71, 29, (1980)Google Scholar
  14. 14.
    Leray, J.: Hyperbolic differential equations. Lecture notes, Princeton 1953 (unpublished)Google Scholar
  15. 15.
    Lichnerowicz, A.: Propagateurs et commutateurs en relativité général. Publication IHES, no. 10, (1961)Google Scholar
  16. 16.
    Penrose, R.: Techniques of differential topology in relativity. SIAM, Philadelphia (1972)Google Scholar
  17. 17.
    Simon, B.: Topics in functional analysis. In: Mathematics of contemporary physics (ed. R. Streater). New York: Academic Press 1972Google Scholar
  18. 18.
    Wald, R.: Existence of the S-matrix in quantum field theory in curved space-time. Ann. Phys. (N. Y.)118, 490 (1979)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • J. Dimock
    • 1
  1. 1.Institute for Advanced StudyPrincetonUSA

Personalised recommendations