Advertisement

Ukrainian Mathematical Journal

, Volume 36, Issue 6, pp 526–530 | Cite as

Invariance principle for wave operators

  • A. Yu. Konstantinov
Article

Keywords

Invariance Principle Wave Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    M. Sh. Birman, “On conditions for the existence of wave operators,” Izv. Akad. Nauk SSSR,27, No. 4, 883–906 (1963).Google Scholar
  2. 2.
    H. Baumgartel and M. Wollenberg, Mathematical Scattering Theory, Academie-Verlag, Berlin (1983).Google Scholar
  3. 3.
    M. Reed and B. Simon, Methods of Modern Mathematical Physics III: Scattering Theory, Academic Press, New York (1979).Google Scholar
  4. 4.
    C. Chandler and A. Gibson, “Invariance principle for scattering with long range (and other) potentials,” Indiana Univ. Math. J.,25, 443–460 (1976).Google Scholar
  5. 5.
    A. Yu. Konstantinov, “Local nuclearity in Cook's method,” in: Spectral Theory of Operators in Problems of Mathematical Physics [in Russian], Mathematics Institute, Academy of Sciences of the Ukrainian SSR, Kiev (1983), pp. 107–112.Google Scholar
  6. 6.
    T. Kato, “On the Cook-Kuroda criterion in scattering theory,” Commun. Math. Phys.,67, 285–291 (1979).Google Scholar
  7. 7.
    A. Yu. Konstantinov, “On conditions for the existence of wave operators,” Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 11, 18–21 (1983).Google Scholar
  8. 8.
    M. Sh. Birman and M. Z. Solomyak, “Double Stieltjes operator integrals,” in: Problems of Mathematical Physics [in Russian], Vol. 1, Leningrad Univ. (1966), pp. 33–67.Google Scholar
  9. 9.
    P. Obermann and M. Wollenberg, “Abel wave operators. II,” J. Funct. Anal.,30, 48–59 (1978).Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • A. Yu. Konstantinov
    • 1
  1. 1.Kiev State UniversityUSSR

Personalised recommendations