Advertisement

European Journal of Nuclear Medicine

, Volume 17, Issue 6–8, pp 346–364 | Cite as

Radiopharmaceuticals: state of the art

  • Alfons Michel Verbruggen
Review Article

Abstract

In the past four years most of the effort in radiopharmaceutical chemistry has been devoted to compounds for positron emission tomography, but widespread use of this technique is still compromised by its high cost. On the other hand, steady progress has also been made in the development of technetium-99m-labelled radiopharmaceuticals. A variety of99mTc-labelled agents is now available or in clinical evaluation for the study of brain perfusion (99mTc-labelled HMPAO, ECD, MRP20), myocardial perfusion (99mTc-labelled MIBI, teboroxime and phosphines) and renal function (99mTc-MAG3,99mTc-L,L-EC). Different direct reduction methods and indirect conjugation methods have been developed to label antibodies or their fragments efficiently with99mTc with preservation of immunoreactivity. However, the strict requirements of the regulatory authorities with respect to purification and quality of these preparations limit their use drastically in clinical practice. Radiopharmaceuticals labelled with beta-emitting radionuclides for radioimmunotherapy and palliative treatment of skeletal metastases are receiving increasing interest. Numerous agents are now available for imaging inflammation, but more clinical experience is required to determine which of them is the most appropriate. The growing importance of radiolabelled receptor-imaging agents is apparent from the commercial availability of the first such compound in Europe.

Key words

Positron emission tomography Technetium 99m-labelled perfusion agents Renal function agents Radiolabelled antibodies Radioimmunotherapy Receptor imaging agents 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baum RP, Hertel A, Lorenz M, Schwarz A, Fricke A, Hör G (1989a)99mTc-labeled anti-CEA monoclonal antibody for tumor immunoscintigraphy: first clinical results. Nucl Med Commun 10:345–352PubMedGoogle Scholar
  2. Baum RP, Hertel A, Lorenz M, Hottenrott C, Schwarz A, Maul FD, Hör G (1989b) Tc-99m labeled intact monoclonal anti-CEA antibody for successful localization of tumor recurrences. In: Schmidt HAE, Buraggi GL (eds) Nuclear medicine: trends and possibilities in nuclear medicine. Schattauer, Stuttgart, pp 515–518Google Scholar
  3. Bayne VJ, Forster AM, Tyrrell DA (1989) Use of sodium iodide to overcome the eluate age restriction for CeretecTM reconstitution. Nucl Med Commun 10:29–33PubMedGoogle Scholar
  4. Blok D, van Ogtrop M, Arndt JW, Camps JAJ, Feitsma RIJ, Goedemans W, Pauwels EKJ (1989a) Detection of inflammatory lesions with radiolabelled immunoglobulins. Eur J Nucl Med 16:303–305Google Scholar
  5. Blok D, Feitsma RIJ, Wasser MNJM, Nieuwenhuizen W, Pauwels EKJ (1989b) A new method for protein labeling with99mTc. Nucl Med Biol 16:11–16Google Scholar
  6. Bogard WC, Dean RT, Deo Y, Fuchs R, Mattis J, McLean AA, Berger HJ (1989) Practical considerations in the production, purification and formulation of monoclonal antibodies for im munoscintigraphy and immunotherapy. Semin Nucl Med 29:202–220Google Scholar
  7. Boniface GR, Izard ME, Walker KZ, McKay DR, Sorby PJ, Turner JH, Morris JG (1989) Labeling of monoclonal antibodies with samarium-153 for combined radioimmunoscintigraphy and radioimmunotherapy. J Nucl Med 30:683–691PubMedGoogle Scholar
  8. Bormans G, Cleynhens B, Van Nerom C, Malfait M, De Roo M, Verbruggen A (1990) Preparation of Tc-99m MAG3 at room temperature. Eur J Nucl Med 16:538 (abstract 745)Google Scholar
  9. Bosslet K, Steinstraesser A, Kuhl A (1991) Immunotherapy using bispecific antibodies. In: Baum RP, Buraggi GL, Cox PH, Hör G (eds) Clinical use of antibodies: tumors, infection, infarction, rejection, and in the diagnosis of AIDS. Kluwer, The Hague (in press)Google Scholar
  10. Bossuyt A, Pirotte R, Chirico A, Caroll MJ, Morgan GF, Thornback JR (1990a) Tc-99m-MRP 20, anew brain perfusion agent suitable for SPECT imaging. Eur J Nucl Med 16:418 (abstract 110)Google Scholar
  11. Bossuyt A, Pirotte R, Chirico A, Jacquemin R, Carroll MJ, Morgan GF, Thornback JR (1990b) Whole body dosmetry of Tc99m-MRP 20: the results of a phase I clinical trial. Eur J Nucl Med 16:432 (abstract 168)Google Scholar
  12. Bossuyt A, Pirotte R, Carroll MJ, Morgan GF, Thornback JR (1991) Tc-99m-MRP 20, a new brain perfusion agent suitable for SPECT imaging. In: Schmidt HAE, van der Schoot JB (eds) Nuclear medicine. The state of the art of nuclear medicine in Europe. Schattauer, Stuttgart (in press)Google Scholar
  13. Botvinick EH (1990) “Hot spot” imaging agents for acute myocardial infarction. J Nucl Med 31:143–146 (editorial)PubMedGoogle Scholar
  14. Breedveld FC, van Kroonenburgh MJPG, Camps JAJ, Feitsma HIJ, Markusse HM, Pauwels EKJ (1989) Imaging of inflammatory arthritis with technetium-99m-labeled IgG. J Nucl Med 30:2017–2021PubMedGoogle Scholar
  15. Britton KE (1990) The development of new radiopharmaceuticals. Eur J Nucl Med 16:373–385PubMedGoogle Scholar
  16. Buscombe JR, Lui D, Ell PJ (1990) First study on the efficacy of99mTc-HIG as a new agent for the investigation of infection and inflammation. Eur J Nucl Med 16:430 (abstract 160)Google Scholar
  17. Carrio I, Duncker C, Berna L, Estorch M (1990) Delineation of infection sites by means of99mTc polyclonal-immunoglobulin and99mTc-antigranulocyte monoclonal antibody studies. Eur J Nucl Med 16:426 (abstract 144)Google Scholar
  18. Coakley AJ, Kettle AG, Wells CP, O'Doherty MJ, Collins REC (1989)99Tcm sestamibi — a new agent for parathyroid imaging. Nucl Med Commun 10:791–794PubMedGoogle Scholar
  19. Colombo F, Lunghi F, Deleide G, Mataresse M, Bonino C, Jiang Z, Libson K, Belletire J, Fazio F, Deutsch E (1989) A new 99m-Tc PAO cerebral perfusion agent with in vitro stability. J Nucl Med 30:742 (abstract 56)Google Scholar
  20. Costa DC, Ell PJ, Cullum ID, Jarritt PH (1986) The in vivo distribution of99Tcm-HM-PAO in normal man. Nucl Med Commun 7:647–658PubMedGoogle Scholar
  21. Crombez D, Van Nerom C, Bormans G, De Roo M, Verbruggen A (1991) Practical aspects of labelling and quality control of Tc-99m MIBI. In: Schmidt HAE, van der Schoot JB (eds) Nuclear medicine. The state of the art of nuclear medicine in Europe. Schattauer, Stuttgart (in press)Google Scholar
  22. Dean RT, Weber R, Boutin R, Nedelman MA, Lister-James J (1989) Ester-linker Tc-99m labeled antibody- bifunctional chelator conjugates having enhanced whole-body clearance. J Nud Med 30:934 (abstract 874)Google Scholar
  23. Dean RT, Weber R, Pak K, Boutin R, Buttram S, Nedelman M, Lister-James J (1990) New facile methods for stably labeling antibodies with technetium-99m. In: Nicolini M, Bandoli G, Mazzi U (eds) Technetium and rhenium in chemistry and nuclear medicine 3. Cortina International, Verona, and Raven Press, New York, pp 605–608Google Scholar
  24. Deshpande SV, Subramanian R, McCall M, DeNardo S, DeNardo G, Meares CF (1990a) Metabolism of indium chelates attached to monoclonal antibody: minimal transchelation of indium from benzyl-EDTA chelate in vivo. J Nucl Med 31:218–224PubMedGoogle Scholar
  25. Deshpande SV, DeNardo SJ, Kukis DL, Moi MK, McCall MJ, DeNardo GL, Meares CF (1990b) Yttrium-90 labeled monoclonal antibody for therapy: labeling by a new macrocyclic bifunctional chelating agent. J Nucl Med 31:473–479PubMedGoogle Scholar
  26. Despopoulos A (1965) A definition of substrate specificity in renal transport of organic anions. J Theor Biol 8:163–192PubMedGoogle Scholar
  27. Dey HM (1990) Markers of myocardial blood flow. Nucl Med Biol 17:157–160Google Scholar
  28. Ehrhardt GJ, Ketring AR, Turpin TA, Razavi M-S, Vanderheyden J-L, Su F-M, Fritzberg AR (1990) A convenient tungsten-188/rhenium-188 generator for radiotherapeutic applications using low specific activity tungsten-188. In: Nicolini M, Bandoli G, Mazzi U (eds) Technetium and rhenium in chemistry and nuclear medicine 3. Cortina International, Verona, and Raven Press, New York, pp 631–634Google Scholar
  29. Eisenhut M, Brandau W, Missfeldt M (1989) Synthesis and in vivo testing of a bromobutyl amine substituted 1,2-dithia-5,9-diazacycloundecane: a versatile precursor for new99mTc-bis(aminoethanethiol) complexes. Nucl Med Biol 16:805–811Google Scholar
  30. Eisenhut M, Missfeldt M, Matzku S (1990) The labeling of proteins with active esters of new Tc-99m-N2S2 complexes. Eur J Nucl Med 16:423 (abstract 132)Google Scholar
  31. Eisenhut M, Missfeldt M, Matzku S (1991) New active N2S2-esters and the labeling of proteins with Tc-99m. J Lab Comp Radiopharm 28: (in press)Google Scholar
  32. Feitsma RIJ, Blok D, Wasser MNJM, Nieuwenhuizen W, Pauwels EKJ (1987) A new method for99mTc-labelling of proteins with an antifibrin monoclonal antibody. Nucl Med Commun 8:771–777PubMedGoogle Scholar
  33. Fishman AJ (1990) Editorial: when magic bullets ricochet. J Nucl Med 31:32–33Google Scholar
  34. Fishman AJ, Khaw BA, Strauss HW (1989) Quo vadis radioimmune imaging. J Nucl Med 30:1911–1915PubMedGoogle Scholar
  35. Franceschi M, Guimond J, Zimmerman RE, Picard MV, English RJ, Carvalho PA, Tumeh SS, Holman BL (1990) Myocardial clearance of Tc-99m hexakis-2-methoxy-2-methylpropyl isoni trile (MIBI) in patients with coronary artery disease. Clin Nucl Med 15:307–312PubMedGoogle Scholar
  36. Fritzberg AR, Abrams PG, Beaumier PC, Kasina S, Morgan AC, Rao TN, Reno JM, Sanderson JA, Srinivasan A, Wilbur DS, Vanderheyden J-L (1988) Specific and stable labeling of anti bodies with technetium-99m with a diamide dithiolate chelating agent. Proc Natl Acad Sci USA 85:4025–4029PubMedGoogle Scholar
  37. Fritzberg AR, Vanderheyden J-L, Morgan AC, Schroff RW, Abrams PG (1990) Rhenium-186/-188 labeled antibodies for radioimmunotherapy. In: Nicolini M, Bandoli G, Mazzi U (eds) Technetium and rhenium in chemistry and nuclear medicine 3. Cortina International, Verona, and Raven Press, New York, pp 615–622Google Scholar
  38. Gerundini P, Maffioli L (1989) Cationic complexes of technetium for myocardial imaging. J Nucl Med 30:1415–1419PubMedGoogle Scholar
  39. Goedemans WT, Panek KJ (1989) A new simple method for labelling of proteins with99mTc. J Nucl Med Allied Sci 33:286 (abstract)Google Scholar
  40. Goedemans WT, Panek KJ, Ensing GJ, de Jong MTM (1990a) A new, simple method for labelling of proteins with99mTc by derivatization with 1-imino-4-mercaptobutyl groups. In: Nicolini M, Bandoli G, Mazzi U (eds) Technetium and rhenium in chemistry and nuclear medicine 3. Cortina International, Verona, and Raven Press, New York, pp 595–604Google Scholar
  41. Goedemans WT, de Jong MTM, Ensing GJ (1990b) 1-Imino-4-mercaptobutyl derivatization and 99m-Tc labelling of proteins. Stability of a dry immunoglobulin kit: Technescan HIG. Eur J Nucl Med 16:450 (abstract 305)Google Scholar
  42. Hadley SW, Gray MA, Atcher R, Hylarides MD, Fritzberg AR, Wilbur DS (1989) Preparation and evaluation ofpara-[At-211]astatobenzoate labeled antibodies. J Nucl Med 30:832 (abstract 432)Google Scholar
  43. Hnatowich DJ (1990a) Recent developments in the radiolabeling of antibodies with iodine, indium, and technetium. Semin Nucl Med 20:80–91Google Scholar
  44. Hnatowich DJ (1990b) Antibody radiolabeling, problems and promises. Nucl Med Biol 17:49–55Google Scholar
  45. Holman BL, Hellman RS, Goldsmith SJ, Mena IG, Léveillé J, Gherardi PG, Moretti JL, Bischof-Delaloye A, Hill TC, Rigo PM, Van Heertum RL, Ell PJ, Buell U, De Roo MC, Morgan R (1989) Biodistribution, dosimetry and clinical evaluation of technetium-99m ethyl cysteinate dimer in normal subjects and in patients with chronic cerebral infarction. J Nucl Med 30:1018–1024PubMedGoogle Scholar
  46. Hung JC, Volkert WA, Holmes RA (1989) Stabilization of technetium-99m-d,l-hexamethylpropyleneamine oxime (99mTc-d,1-HMPAO) using gentisic acid. Nucl Med Biol 16:675–680Google Scholar
  47. Johannsen B, Noll B, Heise KH, May K, Spies H, Hoffmann I, Hoffmann S, Klötzer D, Reiss H, Bruch L, Modersohn D (1990) Different technetium complexes with mercaptoacetyltriglycine. Isotopen-praxis 26:97–101Google Scholar
  48. Joiris E, Bastin B, Thornback JR (1989) A new method for labelling of monoclonal antibodies and their fragments with99mTc. J Nucl Med Allied Sci 33:290 (abstract)Google Scholar
  49. Joiris E, Bastin B, Thornback JR (1990) A new method for labelling of monoclonal antibodies, their fragments and other proteins with technetium-99m. In: Nicolini M, Bandoli G, Mazzi U (eds) Technetium and rhenium in chemistry and nuclear medicine 3. Cortina International, Verona, and Raven Press, New York, pp 609–614Google Scholar
  50. Kelly JD, Higley B, Archer MC, Canning LR, Chin KW, Edwards B, Forster AM, Gill HK, Latham IA, Pickett RD, Webbon P, Edwards PG, Imran A, Griffiths DV, York DC, Mahoney PM, Tonkinson DJ, Dilworth JR, Lahiri A (1990) Technetium-99m complexes of functionalised diphosphines for myocardial imaging. In: Nicolini M, Bandoli G, Mazzi U (eds) Technetium and rhenium in chemistry and nuclear medicine 3. Cortina International, Verona, and Raven Press, New York, pp 405–412Google Scholar
  51. Kung HF (1990) Radiopharmaceuticals for CNS receptor imaging with SPECT. Nucl Med Biol 17:85–92Google Scholar
  52. Kung HF, Billings J, Guo Y-Z, Xu X, Mach RH, Blau M, Ackerhalt RA (1988) Preparation and biodistribution of [123I]IBZM: a potential CNS D-2 dopamine receptor imaging agent. Nucl Med Biol 15:195–201Google Scholar
  53. Kung HF, Pan S, Kung M-P, Billings J, Kasliwal R, Reilley J, Alavi A (1989) In vitro and in vivo evaluation of [123I]IBZM: a potential CNS D-2 dopamine receptor imaging agent. J Nucl Med 30:88–92PubMedGoogle Scholar
  54. Lang J, Barbarics E, Lazar J, Janoki GA, Papos M, Pavics L, Csernay L (1990) A novel d,1-HM-PAO kit formulation providing high in vitro lipophilic complex stability. Eur J Nucl Med 16:541 (abstract 757)Google Scholar
  55. Leppo JA, Meerdink DJ (1990) Comparative myocardial extraction of two technetium-labeled BATO derivatives (SQ 30217, SQ 32014) and thallium. J Nucl Med 31:67–74PubMedGoogle Scholar
  56. Léveillé J, Demonceau G, De Roo M, Rigo P, Taillefer R, Morgan RA, Kupranick D, Walovitch RC (1989) Characterization of technetium-99m-l,L-ECD for brain perfusion imaging, part 2: biodistribution and brain imaging in humans. J Nucl Med 30:1902–1910PubMedGoogle Scholar
  57. Libson K, Messa C, Kwiatkowski M, Zito F, Best T, Colombo F, Mattarresse M, Wang X, Fragasso G, Fazio F, Deutsch E (1990) Development of new99mTc myocardial perfusion im aging agents. In: Nicolini M, Bandoli G, Mazzi U (eds) Technetium and rhenium in chemistry and nuclear medicine 3. Cortina International, Verona, and Raven Press, New York, pp 365–368Google Scholar
  58. Lind P, Langsteger W, Kö1tringer P, Dimai HP, Passe R, Eber O (1990) Immunoscintigraphy of inflammatory processes with a technetium-99m-labeled monoclonal antigranulocyte antibody (MAb BW 250/983). J Nucl Med 31:417–423PubMedGoogle Scholar
  59. Macklis RM, Kinsey BM, Kassis AI, Ferrara JLM, Atelier RW, Hines JJ, Coleman CN, Adelstein SJ, Burakoff SJ (1988) Radioimmunotherapy with alpha-particle emitting immunoconjugates. Science 240:1024–1026PubMedGoogle Scholar
  60. Mather SJ, Tolley DM, White GW (1989) Labelling monoclonal antibodies with yttrium-90. Eur J Nucl Med 15:307–312PubMedGoogle Scholar
  61. Maxon HR, Deutsch EA, Thomas SR, Libson K, Lukes SJ, Williams CC, Ali S (1988)186Re(Sn)-HEDP for treatment of multiple metastatic foci in bone: human biodistribution and dosimetric studies. Radiology 166:501–507PubMedGoogle Scholar
  62. Maxon HR, Schroder LE, Thomas SR, Hertzberg VS, Deutsch E, Samaratunga RC, Libson K, Williams CC, Moulton JS, Schneider HJ (1990)186Re(Sn)-HEDP for the treatment of painful osseous metastases: initial clinical experience. In: Nicolini M, Bandoli G, Mazzi U (eds) Technetium and rhenium in chemistry and nuclear medicine 3. Cortina International, Verona, and Raven Press, New York, pp 733–740Google Scholar
  63. Maziére B, Maziére M (1990) Where have we got to with neuroreceptor mapping of the brain? Eur J Nucl Med 16:817–835PubMedGoogle Scholar
  64. McAfee JG (1990) What is the best method for imaging focal infarctions? J Nucl Med 31:413–416 (editorial)PubMedGoogle Scholar
  65. McCready VR, Ott RJ (1989) The future of PET? Nucl Med Commun 10:621–625 (editorial)PubMedGoogle Scholar
  66. Messa C, Zito F, Rossetti C, Colombo F, Matarrese M, Taddei G, Deutsch E, Lucignani G, Fazio F (1989) Evaluation of a new tracer for cerebral perfusion studies: Tc-99m d,1-CBPAO. Preliminary results in humans. J Nucl Med 30:831 (abstract 426)Google Scholar
  67. Messa C, Zito F, Colombo F, Rossetti C, Taddei G, Lucignani G, Fazio F, Deutsch E (1990) Preliminary evaluation of the rCBF tracer [99mTc]d,1-CB-PAO in human volunteers. In: Nicolini M, Bandoli G, Mazzi U (eds) Technetium and rhenium in chemistry and nuclear medicine 3. Cortina International, Verona, and Raven Press, New York, pp 699–702Google Scholar
  68. Morgan GF, Deblaton M, Clemens P, Van den Broeck P, Bossuyt A, Thornback JR (1989)99mTc MRP 20. A new class of neutral complex with implications for brain scintigraphy. J Nucl Med Allied Sci 33:305–306Google Scholar
  69. Morgan GF, Thornback JR, Deblaton M, Clemens P, Vandenbroeck P (1990) Development of a novel class of lipophilic technetium complexes designed to mimic rCBF. Eur J Nucl Med 16:423 (abstract 131)Google Scholar
  70. Narra RK, Eckelman WC, Kuczynski BL, Silva D, Feld T, Nunn AD (1989a) Pharmacokinetics of99mTc-myocardial perfusion agents in different species. J Lab Comp Radiopharm 26:418–420Google Scholar
  71. Narra RK, Nunn AD, Kuczynski BL, Feld T, Wedeking P, Eckelman WC (1989b) A neutral technetium-99m complex for myocardial imaging. J Nucl Med 30:1830–1837PubMedGoogle Scholar
  72. Neirinckx RD, Canning LR, Piper IM, Nowotnik DP, Pickett RD, Holmes RA, Volkert WA, Forster AM, Weisner PS, Marriott JA, Chaplin SB (1987) Technetium-99m d,1-HM-PAO: a new radiopharmaceutical for SPELT imaging of regional cerebral blood perfusion. J Nucl Med 28:191–202PubMedGoogle Scholar
  73. Nunn AD (1990) Radiopharmaceuticals for imaging myocardial perfusion. Semin Nucl Med 20:111–118PubMedGoogle Scholar
  74. Oyen WJG, Claessens RAMJ, van Horn JR, van der Meer JWM, Corstens FHM (1990) Scintigraphic detection of bone and joint infections with indium-111-labeled nonspecific polyclonal human immunoglobulin G. J Nucl Med 31:403–412PubMedGoogle Scholar
  75. Paganelli G, DeNardi P, Magnani P, Stella M, Zito F, Pennachioli L, Di Carlo V, Siccardi AG, Malcovati M, Fazio F (1990a) Intraoperative detection of cancer using I-125 labelled biotinylated monoclonal antibodies and cold avidin. Eur J Nucl Med 16:487 (abstract 538)Google Scholar
  76. Paganelli G, Magnani P, Rossetti C, Zito F, Belloni C, Pasini A, Sassi I, Sanvito F, Malcovati M, Siccardi AG, Fazio F (1990b) Radioimmunotargeting of ovarian carcinomas with biotinylated monoclonal antibodies and radioactive streptavidin. Eur J Nucl Med 16:486 (abstract 537)Google Scholar
  77. Paganelli G, Magnani P, Zito F, Villa E, Stella M, Lopalco L, Rossetti C, Malcovati M, Siccardi AG, Fazio F (1990c) Three step tumor targeting in CEA positive patients with the avidinbiotin system. Eur J Nucl Med 16:394 (abstract 13)Google Scholar
  78. Paik CH, Yokoyama K, Reynolds JC, Quadri SM, Min CY, Shin SY, Maloney PJ, Larson SM, Reba RC (1989) Reduction of background activities by introduction of a diester linkage between antibody and a chelate in radioimmunodetection of tumor. J Nucl Med 30:1693–1701PubMedGoogle Scholar
  79. Pak KY, Nedelman MA, Stewart R, Dean RT (1989) A rapid and efficient method for labeling IgG antibodies with Tc-99m and comparison to Tc-99mFab′ antibody fragments. J Nucl Med 30:793 (abstract 268)Google Scholar
  80. Pauwels EKJ, Van Kroonenburgh MJPG (1988) Prospects for radioimmunoimaging and radioimmunotherapy in oncology? Nucl Med Commun 9:867–869 (editorial)PubMedGoogle Scholar
  81. Piera C, Pavia A, Bassa P, Garcia J (1990) Preparation of [99mTc]HM-PAO. J Nucl Med 31:127–128 (letter)PubMedGoogle Scholar
  82. Pollok JM, Schultes B, Oehr P (1990) Labelling of a biotin-derivative by99mTc, its purification and binding-capacity to avidin. NucCompact 21:36–37Google Scholar
  83. Prestwich WV, Nunes J, Kwok CS (1989) Beta dose point kernels for radionuclides of potential use in radioimmunotherapy. J Nucl Med 30:1036–1046PubMedGoogle Scholar
  84. Quivy J, Delcorde A, Henrot P, Deblaton M, Pirotte R, Verbist A, Frïhling J, Zeicher M (1990) New steroidal agent with high selectivity for the radioimaging of tumour tissues containing estrogen receptors. Eur J Nucl Med 16:430 (abstract 158)Google Scholar
  85. Reddy EK, Robinson RG, Mansfield CM (1986) Strontium-89 for palliation of bone metastases. J Natl Med Assoc 78:27–32PubMedGoogle Scholar
  86. Rhodes BA, Zamora PO, Newell KD, Valdez EF (1986) Technetium-99m labelling of murine monoclonal antibody fragments. J Nucl Med 27:685–693PubMedGoogle Scholar
  87. Robinson RG, Spicer JA, Preston DF, Wegst AV, Martin NL (1987) Treatment of metastatic bone pain with strontium 89. Nucl Med Biol 14:219–222Google Scholar
  88. Rossetti C, Best T, Paganelli G, Vanoli G, Zito F, Colombo F, Fragasso G, Lucignani G, Libson K, Deutsch E, Fazio F (1990) Human biodistribution and initial clinical evaluation of a new myocardial perfusion tracer: 99m-Tc Q3. Eur J Nucl Med 16:541 (abstract 755)Google Scholar
  89. Rubin RH, Fishman AJ, Needleman M, Wilkinson R, Callahan RJ, Khaw B-A, Hansen WP, Kramer PB, Strauss HW (1989) Radiolabeled, nonspecific, polyclonal human immunoglobulin in the detection of focal inflammation by scintigraphy. Comparison with gallium 67 citrate and technetium-99m albumin. J Nucl Med 30:385–389PubMedGoogle Scholar
  90. Salk D, and the Multicenter Study Group (1988) Technetium-labeled monoclonal antibodies for imaging metastatic melanoma: results of a multicenter clinical study. Semin Oncol 15:608–618PubMedGoogle Scholar
  91. Schroder LE, Maxon HR (1990) Re-186-HEDP palliation of painful skeletal metastases. Mallinckrodt Diagnostica, brochureGoogle Scholar
  92. Schroff RW, Weiden PL, Appelbaum J, Fer MF, Breitz H, Vanderheyden J-L. Ratliff BA, Fisher D, Foisie D, Hanelin LG, Morgan AC, Fritzberg AR, Abrams PG (1990) Rhenium 186 labeled antibody in patients with cancer: report of a pilot I study. Antibody, Immunoconjugates, and Radiopharmaceuticals 3:99–111Google Scholar
  93. Schwarz A, Steinsträsser A (1987) A novel approach to Tc-99m-labeled monoclonal antibodies. J Nucl Med 28:721 (abstract 695)Google Scholar
  94. Seldin DW, Johnson LL, Blood DK, Muschel MJ, Smith KF, Wall RM, Cannon PJ (1989) Myocardial perfusion imaging with technetium-99m SQ30217: comparison with thallium 201 and coronary anatomy. J Nucl Med 30:312–319PubMedGoogle Scholar
  95. Serafini AN, Kotler J, Feun L, Dewanjee M, Robinson D, Salk D, Sfakianakis G, Abrams P, Savaraj N, Goodwin D, Nelp W (1989) Technetium-99m labeled monoclonal antibodies in the detection of metastatic melanoma. Clin Nucl Med 14:580–587PubMedGoogle Scholar
  96. Sharp FF, Smith FW, Gemmell HG, Lyall D, Evans NTS, Gvozdanovic D, Davidson J, Tyrrell DA, Pickett RD, Neirinckx RD (1986) Technetium-99m HM-PAO stereoisomers as poten tial agents for imaging regional cerebral blood flow: human volunteer studies. J Nucl Med 27:171–177PubMedGoogle Scholar
  97. Siccardi AG, Buraggi GL, Natali PG, Scassellati GA, Viale G, Ferrone S (1990) European multicentre study on melanoma immunoscintigraphy by means of99mTc-labelled monoclonal antibody fragments. Eur J Nucl Med 16:317–323PubMedGoogle Scholar
  98. Singh A, Holmes RA, Farhangi M, Volkert WA, Williams A, Stringham LM, Ketrin AR (1989) Human pharmacokinetics of samarium-153 EDTMP in metastatic cancer. J Nucl Med 30:1814–1818PubMedGoogle Scholar
  99. Thakur ML, DeFulvio J, Park CH (1990) Use of ascorbic acid (AA) for direct Tc-99m labeling of monoclonal antibodies (MAbs). Eur J Nucl Med 16:392 (abstract 8)Google Scholar
  100. Turner JH, Martindale AA, Sorby P, Hetherington EL, Fleay RF, Hoffman RF, Claringbold PG (1989) Samarium 153 EDTMPtherapy of disseminated skeletal metastasis. Eur J Nucl Med 15:784–795PubMedGoogle Scholar
  101. USP-NF (1989) Fludeoxyglucose F 18 Injection. First Supplement, pp 2129–2130Google Scholar
  102. Vallabhajosula S, Zimmerman RE, Picard M, Stritzke P, Mena I, Hellman RS, Tikofsky RS, Stablin MG, Morgan RA, Goldsmith SJ (1989) Technetium-99m ECD: a new brain imaging agent: in vivo kinetics and biodistribution studies in normal human subjects. J Nucl Med 30:599–604PubMedGoogle Scholar
  103. Van Nerom C, Bormans G, Bauwens J, Vandecruys A, De Roo M, Verbruggen A (1990a) Comparative evaluation of Tc-99ml,L-ethylenedicysteine and Tc-99m MAG3 in volunteers. Eur J Nucl Med 16:417 (abstract 105)Google Scholar
  104. Van Nerom C, Bormans G, De Beukelaer C, De Roo M, Verbruggen A (1990b) Metabolism of 99mTc-ECD in organ homogenates of baboon. In: Schmidt HAE, Chambron PD (eds) Nuclear medicine. Quantitative analysis in imaging and function. Schattauer, Stuttgart, pp 87–89Google Scholar
  105. Van Nerom C, Bormans G, Bauwens J, Vandecruys A, De Roo M, Verbruggen A (1991) Comparative evaluation of Tc-99ml,L-ethylenedicysteine and Tc-99m MAG3 in volunteers. In: Schmidt HAE, van der Schoot JB (eds) Nuclear medicine. The state of the art of nuclear medicine in Europe. Schattauer, Stuttgart (in press)Google Scholar
  106. Verbruggen A, Nosco D, Van Nerom C, Bormans G, Adriaens P, De Roo M (1990) Evaluation of Tc-99ml,L-ethylenedicysteine as a potential alternative to Tc-99m MAG3. Eur J Nucl Med 16:429 (abstract 156)Google Scholar
  107. Wackers FJT, Berman DS, Maddahi J, Watson DD, Beller GA, Strauss HW, Boucher CA, Picard M, Holman BL, Fridrich R, Inglese E, Delaloye B, Bischof-Delaloye A, Camin L, McKusick K (1989a) Technetium-99m hexakis 2-methoxyisobutyl isonitrile: human biodistribution, dosimetry, safety and preliminary comparison to thallium 201 for myocardial perfusion imaging. J Nucl Med 30:301–311PubMedGoogle Scholar
  108. Wackers FJ, Zaret BL, Kayden DS, Mattera JA, Fetterman RC (1989b) Does improved Tc-99m isonitrile uptake after thrombolysis for acute infarction indicate myocardial salvage? Comparison with redistribution thallium 201. J Nucl Med 30:800 (abstract 296)Google Scholar
  109. Wahl RL, Wissing JR, Kaminski MS (1989) Isotype switch variant anti-idiotype monoclonal antibodies: comparative radiolabeling and in vitro binding. J Nucl Med 30:227–232PubMedGoogle Scholar
  110. Walovitch RC, Williams SJ, Lafrance ND (1990) Radiolabeled agents for SPECT imaging of brain perfusion. Nucl Med Biol 17:77–83Google Scholar
  111. Wessels BW, Rogus RD (1984) Radionuclide selection and model absorbed dose calculations for radiolabelled tumour associated antibodies. Med Phys 11:638–645PubMedGoogle Scholar
  112. Wilbur DS, Hadley SW, Hylarides MD, Abrams PG, Beaumier PA, Morgan AC, Reno JM, Fritzberg AR (1989) Development of a stable radioiodinating reagent to label monoclonal antibodies for therapy of cancer. J Nucl Med 30:216–226PubMedGoogle Scholar
  113. Zeicher M, Henrot P, Loos M, Strijckmans P, Quivy J (1990) Z-11β-ehloromethyl-17α-iodovinyl estradiol, a potential agent for targetted radiotherapy of estrogen receptor (ER) positive tumours. Eur J Nucl Med 16:439 (abstract 194)Google Scholar
  114. Zielinski JE, Larner JM, Hoffer PB, Hochberg RB (1989) The synthesis of 11β-methoxy-[l6α-123I] iodoestradiol and its interaction with the estrogen receptor in vivo and in vitro. J Nucl Med 30:209–215PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Alfons Michel Verbruggen
    • 1
  1. 1.Laboratory of Radiopharmaceutical Chemistry I.F.W.University Hospital GasthuisbergLeuvenBelgium

Personalised recommendations